These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


102 related items for PubMed ID: 3185300

  • 21. A comparison of the microcirculation in rat fast glycolytic and slow oxidative muscles at rest and during contractions.
    Dawson JM, Tyler KR, Hudlicka O.
    Microvasc Res; 1987 Mar; 33(2):167-82. PubMed ID: 3587074
    [Abstract] [Full Text] [Related]

  • 22. Morphologic sites for regulating blood flow in the exocrine pancreas.
    Aharinejad S, MacDonald IC, Miksovsky A.
    Microsc Res Tech; 1987 Mar; 37(5-6):434-49. PubMed ID: 9220422
    [Abstract] [Full Text] [Related]

  • 23. Visible spectroscopic technique for flowing erythrocytes in capillary.
    Shiga T, Tateishi N, Maeda N.
    Biorheology; 1990 Mar; 27(3-4):389-97. PubMed ID: 2261505
    [Abstract] [Full Text] [Related]

  • 24. In vivo evaluation of platelet-endothelial interactions in retinal microcirculation of rats.
    Tsujikawa A, Kiryu J, Nonaka A, Yamashiro K, Nishiwaki H, Tojo SJ, Ogura Y, Honda Y.
    Invest Ophthalmol Vis Sci; 1999 Nov; 40(12):2918-24. PubMed ID: 10549653
    [Abstract] [Full Text] [Related]

  • 25. Skeletal muscle capillary hemodynamics from rest to contractions: implications for oxygen transfer.
    Kindig CA, Richardson TE, Poole DC.
    J Appl Physiol (1985); 2002 Jun; 92(6):2513-20. PubMed ID: 12015367
    [Abstract] [Full Text] [Related]

  • 26. Regulation of oxygen supply in the cerebral circulation.
    Hudetz AG.
    Adv Exp Med Biol; 1997 Jun; 428():513-20. PubMed ID: 9500093
    [Abstract] [Full Text] [Related]

  • 27.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 28. Effects of changes in systemic hematocrit on the microcirculation in rat cremaster muscle.
    Vicaut E, Stucker O, Teisseire B, Duvelleroy M.
    Int J Microcirc Clin Exp; 1987 Aug; 6(3):225-35. PubMed ID: 3654067
    [Abstract] [Full Text] [Related]

  • 29.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 30.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 31. Synchronous oscillations in cerebrocortical capillary red blood cell velocity after nitric oxide synthase inhibition.
    Biswal BB, Hudetz AG.
    Microvasc Res; 1996 Jul; 52(1):1-12. PubMed ID: 8812747
    [Abstract] [Full Text] [Related]

  • 32.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 33.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 34.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 35.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 36.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 37. Video microscopy of cerebrocortical capillary flow: response to hypotension and intracranial hypertension.
    Hudetz AG, Fehér G, Weigle CG, Knuese DE, Kampine JP.
    Am J Physiol; 1995 Jun; 268(6 Pt 2):H2202-10. PubMed ID: 7611470
    [Abstract] [Full Text] [Related]

  • 38. Changes in capillary shear stress in skeletal muscles exposed to long-term activity: role of nitric oxide.
    Hudlicka O, Brown MD, May S, Zakrzewicz A, Pries AR.
    Microcirculation; 2006 Jun; 13(3):249-59. PubMed ID: 16627367
    [Abstract] [Full Text] [Related]

  • 39. Is physiological angiogenesis in skeletal muscle regulated by changes in microcirculation?
    Hudlicka O.
    Microcirculation; 1998 Jun; 5(1):7-23. PubMed ID: 9702718
    [Abstract] [Full Text] [Related]

  • 40.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 6.