These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


215 related items for PubMed ID: 31854413

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Quantitative and Noninvasive Detection of SAH-Related MiRNA in Cerebrospinal Fluids In Vivo Using SERS Sensors Based on Acupuncture-Based Technology.
    Sun J, Song Y, Wang M, Zhao P, Gao F, Li J, Yang M, Yuan H, Sun B, Wang Y.
    ACS Appl Mater Interfaces; 2022 Aug 17; 14(32):37088-37100. PubMed ID: 35938390
    [Abstract] [Full Text] [Related]

  • 6. Ultra-sensitive and high efficiency detection of multiple non-small cell lung cancer-related miRNAs on a single test line in catalytic hairpin assembly-based SERS-LFA strip.
    Mao Y, Sun Y, Xue J, Lu W, Cao X.
    Anal Chim Acta; 2021 Sep 15; 1178():338800. PubMed ID: 34482860
    [Abstract] [Full Text] [Related]

  • 7. Pump-free microfluidic chip based laryngeal squamous cell carcinoma-related microRNAs detection through the combination of surface-enhanced Raman scattering techniques and catalytic hairpin assembly amplification.
    Ge S, Li G, Zhou X, Mao Y, Gu Y, Li Z, Gu Y, Cao X.
    Talanta; 2022 Aug 01; 245():123478. PubMed ID: 35436733
    [Abstract] [Full Text] [Related]

  • 8. Quantitative and Specific Detection of Exosomal miRNAs for Accurate Diagnosis of Breast Cancer Using a Surface-Enhanced Raman Scattering Sensor Based on Plasmonic Head-Flocked Gold Nanopillars.
    Lee JU, Kim WH, Lee HS, Park KH, Sim SJ.
    Small; 2019 Apr 01; 15(17):e1804968. PubMed ID: 30828996
    [Abstract] [Full Text] [Related]

  • 9. MiR-291a-3p regulates the BMSCs differentiation via targeting DKK1 in dexamethasone-induced osteoporosis.
    Li ZH, Hu H, Zhang XY, Liu GD, Ran B, Zhang PG, Liao MM, Wu YC.
    Kaohsiung J Med Sci; 2020 Jan 01; 36(1):35-42. PubMed ID: 31729834
    [Abstract] [Full Text] [Related]

  • 10. Intracellular surface-enhanced Raman scattering probes based on TAT peptide-conjugated Au nanostars for distinguishing the differentiation of lung resident mesenchymal stem cells.
    Shi C, Cao X, Chen X, Sun Z, Xiang Z, Zhao H, Qian W, Han X.
    Biomaterials; 2015 Jul 01; 58():10-25. PubMed ID: 25941778
    [Abstract] [Full Text] [Related]

  • 11. A Dual-Signal Twinkling Probe for Fluorescence-SERS Dual Spectrum Imaging and Detection of miRNA in Single Living Cell via Absolute Value Coupling of Reciprocal Signals.
    Zhang N, Ye S, Wang Z, Li R, Wang M.
    ACS Sens; 2019 Apr 26; 4(4):924-930. PubMed ID: 30924337
    [Abstract] [Full Text] [Related]

  • 12. Smart Surface-Enhanced Resonance Raman Scattering Nanoprobe for Monitoring Cellular Alkaline Phosphatase Activity during Osteogenic Differentiation.
    Sun D, Xu W, Liang C, Shi W, Xu S.
    ACS Sens; 2020 Jun 26; 5(6):1758-1767. PubMed ID: 32388973
    [Abstract] [Full Text] [Related]

  • 13. LncRNA MEG3 inhibited osteogenic differentiation of bone marrow mesenchymal stem cells from postmenopausal osteoporosis by targeting miR-133a-3p.
    Wang Q, Li Y, Zhang Y, Ma L, Lin L, Meng J, Jiang L, Wang L, Zhou P, Zhang Y.
    Biomed Pharmacother; 2017 May 26; 89():1178-1186. PubMed ID: 28320084
    [Abstract] [Full Text] [Related]

  • 14. Hollow Au nanoflower substrates for identification and discrimination of the differentiation of bone marrow mesenchymal stem cells by surface-enhanced Raman spectroscopy.
    Cao X, Shan Y, Tan L, Yu X, Bao M, Li W, Shi H.
    J Mater Chem B; 2017 Aug 14; 5(30):5983-5995. PubMed ID: 32264355
    [Abstract] [Full Text] [Related]

  • 15. A LoC-SERS platform based on triple signal amplification for highly sensitive detection of colorectal cancer miRNAs.
    Dai C, Wang K, Tan M, Hua Z, Xia L, Qin L.
    Anal Methods; 2023 Aug 24; 15(33):4194-4203. PubMed ID: 37584160
    [Abstract] [Full Text] [Related]

  • 16. miR-384-5p Targets Gli2 and Negatively Regulates Age-Related Osteogenic Differentiation of Rat Bone Marrow Mesenchymal Stem Cells.
    Li X, Wu J, Liu S, Zhang K, Miao X, Li J, Shi Z, Gao Y.
    Stem Cells Dev; 2019 Jun 15; 28(12):791-798. PubMed ID: 30950325
    [Abstract] [Full Text] [Related]

  • 17. A novel surface-enhanced Raman scattering probe based on Au nanoboxes for dynamic monitoring of caspase-3 during cervical cancer cell apoptosis.
    Sun Y, Wang Y, Lu W, Liu C, Ge S, Zhou X, Bi C, Cao X.
    J Mater Chem B; 2021 Jan 21; 9(2):381-391. PubMed ID: 33283805
    [Abstract] [Full Text] [Related]

  • 18. Fluorescence and SERS Imaging for the Simultaneous Absolute Quantification of Multiple miRNAs in Living Cells.
    Ye S, Li X, Wang M, Tang B.
    Anal Chem; 2017 May 02; 89(9):5124-5130. PubMed ID: 28358481
    [Abstract] [Full Text] [Related]

  • 19. Bio-hybrid gold nanoparticles as SERS probe for rapid bacteria cell identification.
    Franco D, De Plano LM, Rizzo MG, Scibilia S, Lentini G, Fazio E, Neri F, Guglielmino SPP, Mezzasalma AM.
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Jan 05; 224():117394. PubMed ID: 31351419
    [Abstract] [Full Text] [Related]

  • 20. Gold nanoparticle-based surface-enhanced Raman scattering for noninvasive molecular probing of embryonic stem cell differentiation.
    Sathuluri RR, Yoshikawa H, Shimizu E, Saito M, Tamiya E.
    PLoS One; 2011 Jan 05; 6(8):e22802. PubMed ID: 21829653
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.