These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


144 related items for PubMed ID: 31855824

  • 1. The influence of linkages between 1-hydroxy-2(1H)-pyridinone coordinating groups and a tris(2-aminoethyl)amine core in a novel series of synthetic hexadentate iron(III) chelators on antimicrobial activity.
    Workman DG, Hunter M, Wang S, Brandel J, Hubscher V, Dover LG, Tétard D.
    Bioorg Chem; 2020 Jan; 95():103465. PubMed ID: 31855824
    [Abstract] [Full Text] [Related]

  • 2. Synthesis of novel Iron(III) chelators based on triaza macrocycle backbone and 1-hydroxy-2(H)-pyridin-2-one coordinating groups and their evaluation as antimicrobial agents.
    Workman DG, Hunter M, Dover LG, Tétard D.
    J Inorg Biochem; 2016 Jul; 160():49-58. PubMed ID: 27118028
    [Abstract] [Full Text] [Related]

  • 3. Synthesis and antimicrobial activity of amine linked bis- and tris-heterocycles.
    Bhanu Prakash T, Dinneswara Reddy G, Padmaja A, Padmavathi V.
    Eur J Med Chem; 2014 Jul 23; 82():347-54. PubMed ID: 24929288
    [Abstract] [Full Text] [Related]

  • 4. Antibacterial activities of iron chelators against common nosocomial pathogens.
    Thompson MG, Corey BW, Si Y, Craft DW, Zurawski DV.
    Antimicrob Agents Chemother; 2012 Oct 23; 56(10):5419-21. PubMed ID: 22850524
    [Abstract] [Full Text] [Related]

  • 5. Synthesis, iron binding and antimicrobial properties of hexadentate 3-hydroxypyridinones-terminated dendrimers.
    Zhou T, Chen K, Kong LM, Liu MS, Ma YM, Xie YY, Hider RC.
    Bioorg Med Chem Lett; 2018 Aug 01; 28(14):2504-2512. PubMed ID: 29886020
    [Abstract] [Full Text] [Related]

  • 6. Rhodamine labeling of 3-hydroxy-4-pyridinone iron chelators is an important contribution to target Mycobacterium avium infection.
    Moniz T, Nunes A, Silva AM, Queirós C, Ivanova G, Gomes MS, Rangel M.
    J Inorg Biochem; 2013 Apr 01; 121():156-66. PubMed ID: 23384853
    [Abstract] [Full Text] [Related]

  • 7. Design, synthesis, and molecular docking study of new piperazine derivative as potential antimicrobial agents.
    Patil M, Noonikara Poyil A, Joshi SD, Patil SA, Patil SA, Bugarin A.
    Bioorg Chem; 2019 Nov 01; 92():103217. PubMed ID: 31479986
    [Abstract] [Full Text] [Related]

  • 8. Iron (III)-chelating resins. 3. Synthesis, iron (III)-chelating properties, and in vitro antibacterial activity of compounds containing 3-hydroxy-2-methyl-4(1H)-pyridinone ligands.
    Feng MH, van der Does L, Bantjes A.
    J Med Chem; 1993 Sep 17; 36(19):2822-7. PubMed ID: 8410996
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Hexadentate 3-hydroxypyridin-4-ones with high iron(III) affinity: design, synthesis and inhibition on methicillin resistant Staphylococcus aureus and Pseudomonas strains.
    Zhou YJ, Liu MS, Osamah AR, Kong XL, Alsam S, Battah S, Xie YY, Hider RC, Zhou T.
    Eur J Med Chem; 2015 Apr 13; 94():8-21. PubMed ID: 25747496
    [Abstract] [Full Text] [Related]

  • 11. Catechol-bearing imidazolium and benzimidazolium chlorides as promising antimicrobial agents.
    Karataş MO, Günal S, Mansur A, Alıcı B, Özdemir İ.
    Arch Pharm (Weinheim); 2020 Jun 13; 353(6):e2000013. PubMed ID: 32301169
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. New fluorescent rosamine chelator showing promising antibacterial activity against Gram-positive bacteria.
    Novais Â, Moniz T, Rebelo AR, Silva AMG, Rangel M, Peixe L.
    Bioorg Chem; 2018 Sep 13; 79():341-349. PubMed ID: 29807207
    [Abstract] [Full Text] [Related]

  • 14. Synthesis and Biological Evaluation of Novel Carbazole Hybrids as Promising Antimicrobial Agents.
    Shaikh MS, Chandrasekaran B, Palkar MB, Kanhed AM, Kajee A, Mlisana KP, Singh P, Ghai M, Cleopus Mahlalela M, Karpoormath R.
    Chem Biodivers; 2020 May 13; 17(5):e1900550. PubMed ID: 32149467
    [Abstract] [Full Text] [Related]

  • 15. Multidentate pyridinones inhibit the metabolism of nontransferrin-bound iron by hepatocytes and hepatoma cells.
    Chua AC, Ingram HA, Raymond KN, Baker E.
    Eur J Biochem; 2003 Apr 13; 270(8):1689-98. PubMed ID: 12694182
    [Abstract] [Full Text] [Related]

  • 16. Synthesis of novel 2-amino-4-(5'-substituted 2'-phenyl-1H-indol-3'-yl)-6-aryl-4H-pyran-3-carbonitrile derivatives as antimicrobial and antioxidant agents.
    Saundane AR, Vijaykumar K, Vaijinath AV.
    Bioorg Med Chem Lett; 2013 Apr 01; 23(7):1978-84. PubMed ID: 23454016
    [Abstract] [Full Text] [Related]

  • 17. Red Microalgal Sulfated Polysaccharide-Cu2O Complexes: Characterization and Bioactivity.
    Yehuda N, Turkulets Y, Shalish I, Kushmaro A, Malis Arad S.
    ACS Appl Mater Interfaces; 2021 Feb 17; 13(6):7070-7079. PubMed ID: 33544596
    [Abstract] [Full Text] [Related]

  • 18. Design, synthesis, structure elucidation, antimicrobial, molecular docking, and SAR studies of novel urea derivatives bearing tricyclic aromatic hydrocarbon rings.
    Sroor FM, El-Sayed AF, Abdelraof M.
    Arch Pharm (Weinheim); 2024 Jun 17; 357(6):e2300738. PubMed ID: 38466125
    [Abstract] [Full Text] [Related]

  • 19. Synthesis and antimicrobial activity of novel fluorine containing 4-(substituted-2-hydroxybenzoyl)-1H-pyrazoles and pyrazolyl benzo[d]oxazoles.
    Gadakh AV, Pandit C, Rindhe SS, Karale BK.
    Bioorg Med Chem Lett; 2010 Sep 15; 20(18):5572-6. PubMed ID: 20724151
    [Abstract] [Full Text] [Related]

  • 20. Efficient synthesis, structure, and antimicrobial activity of some novel N- and S-beta-D-glucosides of 5-pyridin-3-yl-1,2,4-triazoles.
    Khalil NS.
    Carbohydr Res; 2006 Sep 25; 341(13):2187-99. PubMed ID: 16839524
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.