These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
340 related items for PubMed ID: 31859126
41. Physiological and biochemical responses of Salix integra Thunb. under copper stress as affected by soil flooding. Cao Y, Ma C, Chen G, Zhang J, Xing B. Environ Pollut; 2017 Jun; 225():644-653. PubMed ID: 28336092 [Abstract] [Full Text] [Related]
42. Silicon improves seed germination and alleviates drought stress in lentil crops by regulating osmolytes, hydrolytic enzymes and antioxidant defense system. Biju S, Fuentes S, Gupta D. Plant Physiol Biochem; 2017 Oct; 119():250-264. PubMed ID: 28917144 [Abstract] [Full Text] [Related]
43. Influence of salicylic acid pretreatment on seeds germination and some defence mechanisms of Zea mays plants under copper stress. Moravcová Š, Tůma J, Dučaiová ZK, Waligórski P, Kula M, Saja D, Słomka A, Bąba W, Libik-Konieczny M. Plant Physiol Biochem; 2018 Jan; 122():19-30. PubMed ID: 29172102 [Abstract] [Full Text] [Related]
44. Physiological and biochemical mechanisms of spermine-induced cadmium stress tolerance in mung bean (Vigna radiata L.) seedlings. Nahar K, Rahman M, Hasanuzzaman M, Alam MM, Rahman A, Suzuki T, Fujita M. Environ Sci Pollut Res Int; 2016 Nov; 23(21):21206-21218. PubMed ID: 27491421 [Abstract] [Full Text] [Related]
45. NaCl pretreatment alleviates salt stress by enhancement of antioxidant defense system and osmolyte accumulation in mungbean (Vigna radiata L. Wilczek). Saha P, Chatterjee P, Biswas AK. Indian J Exp Biol; 2010 Jun; 48(6):593-600. PubMed ID: 20882762 [Abstract] [Full Text] [Related]
46. Morpho-physiological traits, antioxidant capacity and phytoextraction of copper by ramie (Boehmeria nivea L.) grown as fodder in copper-contaminated soil. Rehman M, Maqbool Z, Peng D, Liu L. Environ Sci Pollut Res Int; 2019 Feb; 26(6):5851-5861. PubMed ID: 30613880 [Abstract] [Full Text] [Related]
47. Alleviation of lead-induced physiological, metabolic, and ultramorphological changes in leaves of upland cotton through glutathione. Khan M, Daud MK, Basharat A, Khan MJ, Azizullah A, Muhammad N, Muhammad N, Ur Rehman Z, Zhu SJ. Environ Sci Pollut Res Int; 2016 May; 23(9):8431-40. PubMed ID: 26782322 [Abstract] [Full Text] [Related]
48. Effects of Copper on Root Morphology, Cations Accumulation, and Oxidative Stress of Grapevine Seedlings. Juang KW, Lo YC, Chen TH, Chen BC. Bull Environ Contam Toxicol; 2019 Jun; 102(6):873-879. PubMed ID: 30993356 [Abstract] [Full Text] [Related]
49. Zinc and Copper Enhance Cucumber Tolerance to Fusaric Acid by Mediating Its Distribution and Toxicity and Modifying the Antioxidant System. Wang R, Huang J, Liang A, Wang Y, Mur LAJ, Wang M, Guo S. Int J Mol Sci; 2020 May 10; 21(9):. PubMed ID: 32397623 [Abstract] [Full Text] [Related]
50. Responses of seedling growth and antioxidant activity to excess iron and copper in Triticum aestivum L. Li X, Ma H, Jia P, Wang J, Jia L, Zhang T, Yang Y, Chen H, Wei X. Ecotoxicol Environ Saf; 2012 Dec 10; 86():47-53. PubMed ID: 23025893 [Abstract] [Full Text] [Related]
51. Brassinosteroid Ameliorates Zinc Oxide Nanoparticles-Induced Oxidative Stress by Improving Antioxidant Potential and Redox Homeostasis in Tomato Seedling. Li M, Ahammed GJ, Li C, Bao X, Yu J, Huang C, Yin H, Zhou J. Front Plant Sci; 2016 Dec 10; 7():615. PubMed ID: 27242821 [Abstract] [Full Text] [Related]
52. The cellular redox state as a modulator in cadmium and copper responses in Arabidopsis thaliana seedlings. Cuypers A, Smeets K, Ruytinx J, Opdenakker K, Keunen E, Remans T, Horemans N, Vanhoudt N, Van Sanden S, Van Belleghem F, Guisez Y, Colpaert J, Vangronsveld J. J Plant Physiol; 2011 Mar 01; 168(4):309-16. PubMed ID: 20828869 [Abstract] [Full Text] [Related]
53. Physiological and nutritional status of black oat (Avena strigosa Schreb.) grown in soil with interaction of high doses of copper and zinc. Tiecher TL, Tiecher T, Ceretta CA, Ferreira PA, Nicoloso FT, Soriani HH, Tassinari A, Paranhos JT, De Conti L, Brunetto G. Plant Physiol Biochem; 2016 Sep 01; 106():253-63. PubMed ID: 27209215 [Abstract] [Full Text] [Related]
54. Evaluation of heme oxygenase 1 (HO 1) in Cd and Ni induced cytotoxicity and crosstalk with ROS quenching enzymes in two to four leaf stage seedlings of Vigna radiata. Mahawar L, Kumar R, Shekhawat GS. Protoplasma; 2018 Mar 01; 255(2):527-545. PubMed ID: 28924722 [Abstract] [Full Text] [Related]
55. Characterization of Cu-tolerant bacteria and definition of their role in promotion of growth, Cu accumulation and reduction of Cu toxicity in Triticum aestivum L. Wang H, Xu R, You L, Zhong G. Ecotoxicol Environ Saf; 2013 Aug 01; 94():1-7. PubMed ID: 23725675 [Abstract] [Full Text] [Related]
56. Toxicological effects, mechanisms, and implied toxicity thresholds in the roots of Vicia faba L. seedlings grown in copper-contaminated soil. Xu X, Huang Z, Wang C, Zhong L, Tian Y, Li D, Zhang G, Shi J. Environ Sci Pollut Res Int; 2015 Sep 01; 22(18):13858-69. PubMed ID: 26208663 [Abstract] [Full Text] [Related]
57. Antioxidative responses of duckweed (Lemna minor L.) to short-term copper exposure. Razinger J, Dermastia M, Drinovec L, Drobne D, Zrimec A, Koce JD. Environ Sci Pollut Res Int; 2007 May 01; 14(3):194-201. PubMed ID: 17561779 [Abstract] [Full Text] [Related]
58. The copper tolerance strategies and the role of antioxidative enzymes in three plant species grown on copper mine. Boojar MM, Goodarzi F. Chemosphere; 2007 May 01; 67(11):2138-47. PubMed ID: 17316756 [Abstract] [Full Text] [Related]
59. Impact of copper nanoparticles and ionic copper exposure on wheat (Triticum aestivum L.) root morphology and antioxidant response. Zhang Z, Ke M, Qu Q, Peijnenburg WJGM, Lu T, Zhang Q, Ye Y, Xu P, Du B, Sun L, Qian H. Environ Pollut; 2018 Aug 01; 239():689-697. PubMed ID: 29715688 [Abstract] [Full Text] [Related]
60. Synergistic effects of chromium and copper on photosynthetic inhibition, subcellular distribution, and related gene expression in Brassica napus cultivars. Li L, Long M, Islam F, Farooq MA, Wang J, Mwamba TM, Shou J, Zhou W. Environ Sci Pollut Res Int; 2019 Apr 01; 26(12):11827-11845. PubMed ID: 30820917 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]