These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
42. Effect of carbon black functionalization on the analytical performance of a tyrosinase biosensor based on glassy carbon electrode modified with dihexadecylphosphate film. Ibáñez-Redín G, Silva TA, Vicentini FC, Fatibello-Filho O. Enzyme Microb Technol; 2018 Sep; 116():41-47. PubMed ID: 29887015 [Abstract] [Full Text] [Related]
44. Synthesis of a Poly-l-Lysine/Black Phosphorus Hybrid for Biosensors. Zhao Y, Zhang YH, Zhuge Z, Tang YH, Tao JW, Chen Y. Anal Chem; 2018 Mar 06; 90(5):3149-3155. PubMed ID: 29397683 [Abstract] [Full Text] [Related]
48. Development of a high analytical performance-tyrosinase biosensor based on a composite graphite-Teflon electrode modified with gold nanoparticles. Carralero V, Mena ML, Gonzalez-Cortés A, Yáñez-Sedeño P, Pingarrón JM. Biosens Bioelectron; 2006 Dec 15; 22(5):730-6. PubMed ID: 16569498 [Abstract] [Full Text] [Related]
49. 2D transition metal carbide MXene as a robust biosensing platform for enzyme immobilization and ultrasensitive detection of phenol. Wu L, Lu X, Dhanjai, Wu ZS, Dong Y, Wang X, Zheng S, Chen J. Biosens Bioelectron; 2018 Jun 01; 107():69-75. PubMed ID: 29448223 [Abstract] [Full Text] [Related]
50. Dopamine biosensor based on surface functionalized nanostructured nickel oxide platform. Roychoudhury A, Basu S, Jha SK. Biosens Bioelectron; 2016 Oct 15; 84():72-81. PubMed ID: 26626970 [Abstract] [Full Text] [Related]
51. Magnetic loading of tyrosinase-Fe3O4/mesoporous silica core/shell microspheres for high sensitive electrochemical biosensing. Wu S, Wang H, Tao S, Wang C, Zhang L, Liu Z, Meng C. Anal Chim Acta; 2011 Feb 07; 686(1-2):81-6. PubMed ID: 21237311 [Abstract] [Full Text] [Related]
54. Disposable tyrosinase-peroxidase bi-enzyme sensor for amperometric detection of phenols. Chang SC, Rawson K, McNeil CJ. Biosens Bioelectron; 2002 Dec 07; 17(11-12):1015-23. PubMed ID: 12392951 [Abstract] [Full Text] [Related]
55. Simultaneous determination of bisphenol A and bisphenol AF using a carbon nanocages and CuO nanochains-based sensitive voltammetric sensor. Chang F, Chen J, Tan J, Pu Z, Wang D. Ecotoxicol Environ Saf; 2024 Oct 01; 284():116986. PubMed ID: 39241609 [Abstract] [Full Text] [Related]
56. A portable optic fiber aptasensor for sensitive, specific and rapid detection of bisphenol-A in water samples. Yildirim N, Long F, He M, Shi HC, Gu AZ. Environ Sci Process Impacts; 2014 May 01; 16(6):1379-86. PubMed ID: 24788953 [Abstract] [Full Text] [Related]
57. Tyrosinase based amperometric biosensor for determination of tyramine in fermented food and beverages with gold nanoparticle doped poly(8-anilino-1-naphthalene sulphonic acid) modified electrode. da Silva W, Ghica ME, Ajayi RF, Iwuoha EI, Brett CMA. Food Chem; 2019 Jun 01; 282():18-26. PubMed ID: 30711102 [Abstract] [Full Text] [Related]
59. Solid/liquid phase microextraction of five bisphenol-type endocrine disrupting chemicals by using a hollow fiber reinforced with graphene oxide nanoribbons, and determination by HPLC-PDA. Han X, Chen J, Qiu H, Shi YP. Mikrochim Acta; 2019 May 24; 186(6):375. PubMed ID: 31127364 [Abstract] [Full Text] [Related]
60. Detection of methyl salicylate using bi-enzyme electrochemical sensor consisting salicylate hydroxylase and tyrosinase. Fang Y, Bullock H, Lee SA, Sekar N, Eiteman MA, Whitman WB, Ramasamy RP. Biosens Bioelectron; 2016 Nov 15; 85():603-610. PubMed ID: 27236726 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]