These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Efficiency at maximum power of a heat engine working with a two-level atomic system. Wang R, Wang J, He J, Ma Y. Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Apr; 87(4):042119. PubMed ID: 23679385 [Abstract] [Full Text] [Related]
4. Efficiency at maximum power output of linear irreversible Carnot-like heat engines. Wang Y, Tu ZC. Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 1):011127. PubMed ID: 22400532 [Abstract] [Full Text] [Related]
5. Efficiency at maximum power output of quantum heat engines under finite-time operation. Wang J, He J, Wu Z. Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Mar; 85(3 Pt 1):031145. PubMed ID: 22587076 [Abstract] [Full Text] [Related]
6. Efficiency at maximum power of a quantum heat engine based on two coupled oscillators. Wang J, Ye Z, Lai Y, Li W, He J. Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jun; 91(6):062134. PubMed ID: 26172688 [Abstract] [Full Text] [Related]
7. Performance bounds of nonadiabatic quantum harmonic Otto engine and refrigerator under a squeezed thermal reservoir. Singh V, Müstecaplıoğlu ÖE. Phys Rev E; 2020 Dec; 102(6-1):062123. PubMed ID: 33466082 [Abstract] [Full Text] [Related]
9. Performance of quantum Otto refrigerators with squeezing. Long R, Liu W. Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jun; 91(6):062137. PubMed ID: 26172691 [Abstract] [Full Text] [Related]
16. Quantum Otto-type heat engine with fixed frequency. Matos RQ, de Assis RJ, de Almeida NG. Phys Rev E; 2023 Nov; 108(5-1):054131. PubMed ID: 38115429 [Abstract] [Full Text] [Related]
17. A quantum-dot heat engine operating close to the thermodynamic efficiency limits. Josefsson M, Svilans A, Burke AM, Hoffmann EA, Fahlvik S, Thelander C, Leijnse M, Linke H. Nat Nanotechnol; 2018 Oct; 13(10):920-924. PubMed ID: 30013221 [Abstract] [Full Text] [Related]