These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


132 related items for PubMed ID: 3188123

  • 21. Hyperglycemia augments ischemic brain injury: in vivo MR imaging/spectroscopic study with nicardipine in cats with occluded middle cerebral arteries.
    Chew W, Kucharczyk J, Moseley M, Derugin N, Norman D.
    AJNR Am J Neuroradiol; 1991; 12(4):603-9. PubMed ID: 1882734
    [Abstract] [Full Text] [Related]

  • 22. Cerebral blood flow and tissue metabolism in experimental cerebral ischemia of spontaneously hypertensive rats with hyper-, normo-, and hypoglycemia.
    Ibayashi S, Fujishima M, Sadoshima S, Yoshida F, Shiokawa O, Ogata J, Omae T.
    Stroke; 1986; 17(2):261-6. PubMed ID: 3961837
    [Abstract] [Full Text] [Related]

  • 23. Metabolism of glucose, glycogen, and high-energy phosphates during complete cerebral ischemia. A comparison of normoglycemic, chronically hyperglycemic diabetic, and acutely hyperglycemic nondiabetic rats.
    Wagner SR, Lanier WL.
    Anesthesiology; 1994 Dec; 81(6):1516-26. PubMed ID: 7992921
    [Abstract] [Full Text] [Related]

  • 24. Changes in extra- and intracellular pH in the brain during and following ischemia in hyperglycemic and in moderately hypoglycemic rats.
    Smith ML, von Hanwehr R, Siesjö BK.
    J Cereb Blood Flow Metab; 1986 Oct; 6(5):574-83. PubMed ID: 3760041
    [Abstract] [Full Text] [Related]

  • 25. Deferoxamine reduces early metabolic failure associated with severe cerebral ischemic acidosis in dogs.
    Hurn PD, Koehler RC, Blizzard KK, Traystman RJ.
    Stroke; 1995 Apr; 26(4):688-94; discussion 694-5. PubMed ID: 7709418
    [Abstract] [Full Text] [Related]

  • 26. Effects of moderate hyperglycemia on the temporal profile of brain tissue intracellular pH and [Mg2+] after global cerebral ischemia in rats.
    Hurd K, Chopp M, Vande Linde AM, Li Y, Spencer T.
    J Neurol Sci; 1995 Apr; 129(2):90-6. PubMed ID: 7608741
    [Abstract] [Full Text] [Related]

  • 27. Protective effects of dimethyl amiloride against postischemic myocardial dysfunction in rabbit hearts: phosphorus 31-nuclear magnetic resonance measurements of intracellular pH and cellular energy.
    Koike A, Akita T, Hotta Y, Takeya K, Kodama I, Murase M, Abe T, Toyama J.
    J Thorac Cardiovasc Surg; 1996 Sep; 112(3):765-75. PubMed ID: 8800166
    [Abstract] [Full Text] [Related]

  • 28. Reduction of hyperthermic ischemic acidosis by a conditioning event in cats.
    Chopp M, Tidwell CD, Lee YJ, Knight R, Helpern JA, Welch KM.
    Stroke; 1989 Oct; 20(10):1357-60. PubMed ID: 2799866
    [Abstract] [Full Text] [Related]

  • 29. Intracellular pH during reperfusion influences evoked potential recovery after complete cerebral ischemia.
    Maruki Y, Koehler RC, Eleff SM, Traystman RJ.
    Stroke; 1993 May; 24(5):697-703; discussion 704. PubMed ID: 8488525
    [Abstract] [Full Text] [Related]

  • 30. The effects of sevoflurane on recovery of brain energy metabolism after cerebral ischemia in the rat: a comparison with isoflurane and halothane.
    Nakajima Y, Moriwaki G, Ikeda K, Fujise Y.
    Anesth Analg; 1997 Sep; 85(3):593-9. PubMed ID: 9296415
    [Abstract] [Full Text] [Related]

  • 31. Early reversal of acidosis and metabolic recovery following ischemia.
    Hoffman TL, LaManna JC, Pundik S, Selman WR, Whittingham TS, Ratcheson RA, Lust WD.
    J Neurosurg; 1994 Oct; 81(4):567-73. PubMed ID: 7931590
    [Abstract] [Full Text] [Related]

  • 32. Effects of glucose and PaO2 modulation on cortical intracellular acidosis, NADH redox state, and infarction in the ischemic penumbra.
    Anderson RE, Tan WK, Martin HS, Meyer FB.
    Stroke; 1999 Jan; 30(1):160-70. PubMed ID: 9880405
    [Abstract] [Full Text] [Related]

  • 33. Metabolic changes during experimental cerebral ischemia in hyperglycemic rats, observed by 31P and 1H magnetic resonance spectroscopy.
    Bolas NM, Rajagopalan B, Mitsumori F, Radda GK.
    Stroke; 1988 May; 19(5):608-14. PubMed ID: 3363594
    [Abstract] [Full Text] [Related]

  • 34. Forebrain ischemia in diabetic and nondiabetic BB rats studied with 31P magnetic resonance spectroscopy.
    Sutherland GR, Peeling J, Sutherland E, Tyson R, Dai F, Kozlowski P, Saunders JK.
    Diabetes; 1992 Oct; 41(10):1328-34. PubMed ID: 1397707
    [Abstract] [Full Text] [Related]

  • 35. Ischemic preconditioning and intracellular pH: a 31P NMR study in the isolated rat heart.
    Cave AC, Garlick PB.
    Am J Physiol; 1997 Jan; 272(1 Pt 2):H544-52. PubMed ID: 9038977
    [Abstract] [Full Text] [Related]

  • 36. Mechanisms of ischemic myocardial cell damage assessed by phosphorus-31 nuclear magnetic resonance.
    Flaherty JT, Weisfeldt ML, Bulkley BH, Gardner TJ, Gott VL, Jacobus WE.
    Circulation; 1982 Mar; 65(3):561-70. PubMed ID: 6799221
    [Abstract] [Full Text] [Related]

  • 37. Metabolic changes associated with altering blood glucose levels in short duration forebrain ischemia.
    Tyson R, Peeling J, Sutherland G.
    Brain Res; 1993 Apr 16; 608(2):288-98. PubMed ID: 8495363
    [Abstract] [Full Text] [Related]

  • 38. Hypoglycemia prevents increase in lactic acidosis during reperfusion after temporary cerebral ischemia in rats.
    Sappey-Marinier D, Chileuitt L, Weiner MW, Faden AI, Weinstein PR.
    NMR Biomed; 1995 Jun 16; 8(4):171-8. PubMed ID: 8771092
    [Abstract] [Full Text] [Related]

  • 39. The effect of hyperglycemia on cerebral metabolism during hypoxia-ischemia in the immature rat.
    Vannucci RC, Brucklacher RM, Vannucci SJ.
    J Cereb Blood Flow Metab; 1996 Sep 16; 16(5):1026-33. PubMed ID: 8784248
    [Abstract] [Full Text] [Related]

  • 40. Effect of hypoglycemia on changes of brain lactic acid and intracellular pH produced by ischemia.
    Nagai Y, Naruse S, Weiner MW.
    NMR Biomed; 1993 Sep 16; 6(1):1-6. PubMed ID: 8457423
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 7.