These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


284 related items for PubMed ID: 3188577

  • 21. The kidney as a novel target tissue for protein adduct formation associated with metabolism of halothane and the candidate chlorofluorocarbon replacement 2,2-dichloro-1,1,1-trifluoroethane.
    Huwyler J, Aeschlimann D, Christen U, Gut J.
    Eur J Biochem; 1992 Jul 01; 207(1):229-38. PubMed ID: 1628651
    [Abstract] [Full Text] [Related]

  • 22. Metabolic activation of lidocaine and covalent binding to rat liver microsomal protein.
    Masubuchi Y, Araki J, Narimatsu S, Suzuki T.
    Biochem Pharmacol; 1992 Jun 23; 43(12):2551-7. PubMed ID: 1632813
    [Abstract] [Full Text] [Related]

  • 23.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 24. The in vitro metabolism of halothane (2-bromo-2-chloro-1,1,1-trifluoroethane) by hepatic microsomal cytochrome P-450.
    Karashima D, Hirokata Y, Shigematsu A, Furukawa T.
    J Pharmacol Exp Ther; 1977 Nov 23; 203(2):409-16. PubMed ID: 909072
    [Abstract] [Full Text] [Related]

  • 25. Activation of 8-methoxypsoralen by cytochrome P-450. Enzyme kinetics of covalent binding and influence of inhibitors and inducers of drug metabolism.
    Mays DC, Hilliard JB, Wong DD, Gerber N.
    Biochem Pharmacol; 1989 May 15; 38(10):1647-55. PubMed ID: 2730678
    [Abstract] [Full Text] [Related]

  • 26. Microsomal lipids as targets for halothane metabolites.
    Legler D, Van Dyke RA.
    Res Commun Chem Pathol Pharmacol; 1982 Sep 15; 37(3):395-402. PubMed ID: 7178651
    [Abstract] [Full Text] [Related]

  • 27. Studies on irreversible binding of radioactivity from (14C)halothane to rat hepatic microsomal lipids and protein.
    Van Dyke RA, Gandolf AJ.
    Drug Metab Dispos; 1974 Sep 15; 2(5):469-76. PubMed ID: 4156311
    [No Abstract] [Full Text] [Related]

  • 28. Specific labelling of microsomal proteins by reactive intermediates generated from 2-acetylaminofluorene in vitro.
    Kaderbhai MA, Bradshaw TK, Freedman RB.
    Chem Biol Interact; 1981 Aug 15; 36(2):211-27. PubMed ID: 7273244
    [Abstract] [Full Text] [Related]

  • 29. Reductive metabolism of halothane by cytochrome P450 isoforms in rats and humans.
    Chow T, Imaoka S, Hiroi T, Funae Y.
    Res Commun Mol Pathol Pharmacol; 1996 Sep 15; 93(3):363-74. PubMed ID: 8896047
    [Abstract] [Full Text] [Related]

  • 30.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 31.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 32. Biotransformation of phenol to hydroquinone and catechol by rat liver microsomes.
    Sawahata T, Neal RA.
    Mol Pharmacol; 1983 Mar 15; 23(2):453-60. PubMed ID: 6835203
    [Abstract] [Full Text] [Related]

  • 33. Covalent binding of the carcinogen trichloroethylene to hepatic microsomal proteins and to exogenous DNA in vitro.
    Banerjee S, Van Duuren BL.
    Cancer Res; 1978 Mar 15; 38(3):776-80. PubMed ID: 626981
    [Abstract] [Full Text] [Related]

  • 34. An animal model of hepatotoxicity associated with halothane anesthesia.
    Sipes IG, Brown BR.
    Anesthesiology; 1976 Dec 15; 45(6):622-8. PubMed ID: 984478
    [Abstract] [Full Text] [Related]

  • 35. Contrasting effects on halothane hepatotoxicity in the phenobarbital-hypoxia and triiodothyronine model: mechanistic implications.
    Uetrecht J, Wood AJ, Phythyon JM, Wood M.
    Anesthesiology; 1983 Sep 15; 59(3):196-201. PubMed ID: 6881584
    [Abstract] [Full Text] [Related]

  • 36. Metabolic activation of the halothane metabolite, [14C]2-chloro-1,1-difluoroethene, in hepatic microsomes.
    Baker MT, Bates JN.
    Drug Metab Dispos; 1988 Sep 15; 16(2):169-72. PubMed ID: 2898328
    [Abstract] [Full Text] [Related]

  • 37. Halothane hepatotoxicity--again?
    Gelman S.
    Anesth Analg; 1986 Aug 15; 65(8):831-4. PubMed ID: 3729017
    [No Abstract] [Full Text] [Related]

  • 38. Characterization of halothane oxidation by hepatic microsomes and purified cytochromes P-450 using a gas chromatographic mass spectrometric assay.
    Gruenke LD, Konopka K, Koop DR, Waskell LA.
    J Pharmacol Exp Ther; 1988 Aug 15; 246(2):454-9. PubMed ID: 3404442
    [Abstract] [Full Text] [Related]

  • 39. Anaerobic release of fluoride from halothane. Relationship to the binding of halothane metabolites to hepatic cellular constituents.
    Van Dyke RA, Gandolf AJ.
    Drug Metab Dispos; 1976 Aug 15; 4(1):40-4. PubMed ID: 3400
    [Abstract] [Full Text] [Related]

  • 40. In vitro metabolism and bioactivation of 1,2,3-trichloropropane.
    Weber GL, Sipes IG.
    Toxicol Appl Pharmacol; 1992 Mar 15; 113(1):152-8. PubMed ID: 1553750
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 15.