These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


229 related items for PubMed ID: 31886656

  • 1. Pathway for the Production of Hydroxyl Radicals during the Microbially Mediated Redox Transformation of Iron (Oxyhydr)oxides.
    Han R, Lv J, Huang Z, Zhang S, Zhang S.
    Environ Sci Technol; 2020 Jan 21; 54(2):902-910. PubMed ID: 31886656
    [Abstract] [Full Text] [Related]

  • 2. Degradation of 2, 2', 4, 4'-Tetrabrominated diphenyl ether (BDE-47) via the Fenton reaction driven by the dissimilatory metal-reducing bacterium Shewanella oneidensis MR-1.
    Peng Z, Shi M, Xia K, Dong Y, Shi L.
    Environ Pollut; 2020 Nov 21; 266(Pt 1):115413. PubMed ID: 32828026
    [Abstract] [Full Text] [Related]

  • 3. Hematite facet-mediated microbial dissimilatory iron reduction and production of reactive oxygen species during aerobic oxidation.
    Han R, Lv J, Zhang S, Zhang S.
    Water Res; 2021 May 01; 195():116988. PubMed ID: 33714011
    [Abstract] [Full Text] [Related]

  • 4. Shewanella oneidensis MR-1 dissimilatory reduction of ferrihydrite to highly enhance mineral transformation and reactive oxygen species production in redox-fluctuating environments.
    Yang L, Wu H, Zhao Y, Tan X, Wei Y, Guan Y, Huang G.
    Chemosphere; 2024 Mar 01; 352():141364. PubMed ID: 38336034
    [Abstract] [Full Text] [Related]

  • 5. Effect of Shewanella oneidensis on the Kinetics of Fe(II)-Catalyzed Transformation of Ferrihydrite to Crystalline Iron Oxides.
    Xiao W, Jones AM, Li X, Collins RN, Waite TD.
    Environ Sci Technol; 2018 Jan 02; 52(1):114-123. PubMed ID: 29205031
    [Abstract] [Full Text] [Related]

  • 6. Multiple Effects of Humic Components on Microbially Mediated Iron Redox Processes and Production of Hydroxyl Radicals.
    Han R, Wang Z, Lv J, Zhu Z, Yu GH, Li G, Zhu YG.
    Environ Sci Technol; 2022 Nov 15; 56(22):16419-16427. PubMed ID: 36223591
    [Abstract] [Full Text] [Related]

  • 7. Abiotic and Biotic Reduction of Iodate Driven by Shewanella oneidensis MR-1.
    Jiang Z, Cui M, Qian L, Jiang Y, Shi L, Dong Y, Li J, Wang Y.
    Environ Sci Technol; 2023 Dec 05; 57(48):19817-19826. PubMed ID: 37972243
    [Abstract] [Full Text] [Related]

  • 8. Incorporation of Shewanella oneidensis MR-1 and goethite stimulates anaerobic Sb(III) oxidation by the generation of labile Fe(III) intermediate.
    Sheng H, Liu W, Wang Y, Ye L, Jing C.
    Environ Pollut; 2024 Jun 15; 351():124008. PubMed ID: 38641038
    [Abstract] [Full Text] [Related]

  • 9. Role of Al substitution in the reduction of ferrihydrite by Shewanella oneidensis MR-1.
    Chen M, Xie X, Yang Y, Gao B, Wang J, Xie Z.
    Environ Sci Pollut Res Int; 2023 Apr 15; 30(16):46657-46668. PubMed ID: 36725797
    [Abstract] [Full Text] [Related]

  • 10. Novel Insights into Sb(III) Oxidation and Immobilization during Ferrous Iron Oxygenation: The Overlooked Roles of Singlet Oxygen and Fe (oxyhydr)oxides Formation.
    Wang Y, He M, Lin C, Ouyang W, Liu X.
    Environ Sci Technol; 2024 Jul 02; 58(26):11470-11481. PubMed ID: 38864425
    [Abstract] [Full Text] [Related]

  • 11. Biogenic iron sulfide functioning as electron-mediating interface to accelerate dissimilatory ferrihydrite reduction by Shewanella oneidensis MR-1.
    Zhu F, Huang Y, Ni H, Tang J, Zhu Q, Long ZE, Zou L.
    Chemosphere; 2022 Feb 02; 288(Pt 3):132661. PubMed ID: 34699878
    [Abstract] [Full Text] [Related]

  • 12. Elucidation of the interplay between Fe(II), Fe(III), and dopamine with relevance to iron solubilization and reactive oxygen species generation by catecholamines.
    Sun Y, Pham AN, Waite TD.
    J Neurochem; 2016 Jun 02; 137(6):955-68. PubMed ID: 26991725
    [Abstract] [Full Text] [Related]

  • 13. Impact of birnessite on arsenic and iron speciation during microbial reduction of arsenic-bearing ferrihydrite.
    Ehlert K, Mikutta C, Kretzschmar R.
    Environ Sci Technol; 2014 Oct 07; 48(19):11320-9. PubMed ID: 25243611
    [Abstract] [Full Text] [Related]

  • 14. Geochemical and isotopic study of abiotic nitrite reduction coupled to biologically produced Fe(II) oxidation in marine environments.
    Benaiges-Fernandez R, Offeddu FG, Margalef-Marti R, Palau J, Urmeneta J, Carrey R, Otero N, Cama J.
    Chemosphere; 2020 Dec 07; 260():127554. PubMed ID: 32688313
    [Abstract] [Full Text] [Related]

  • 15. The degradation of dissolved organic matter in black and odorous water by humic substance-mediated Fe(II)/Fe(III) cycle under redox fluctuation.
    Li H, Ding S, Song W, Wang X, Ding J, Lu J.
    J Environ Manage; 2022 Nov 01; 321():115942. PubMed ID: 35985265
    [Abstract] [Full Text] [Related]

  • 16. Survival of Anaerobic Fe2+ Stress Requires the ClpXP Protease.
    Bennett BD, Redford KE, Gralnick JA.
    J Bacteriol; 2018 Apr 15; 200(8):. PubMed ID: 29378887
    [Abstract] [Full Text] [Related]

  • 17. The role of electron shuttle enhances Fe(III)-mediated reduction of Cr(VI) by Shewanella oneidensis MR-1.
    Liu X, Chu G, Du Y, Li J, Si Y.
    World J Microbiol Biotechnol; 2019 Mar 28; 35(4):64. PubMed ID: 30923928
    [Abstract] [Full Text] [Related]

  • 18. Dissimilatory bioreduction of iron(III) oxides by Shewanella loihica under marine sediment conditions.
    Benaiges-Fernandez R, Palau J, Offeddu FG, Cama J, Urmeneta J, Soler JM, Dold B.
    Mar Environ Res; 2019 Oct 28; 151():104782. PubMed ID: 31514974
    [Abstract] [Full Text] [Related]

  • 19. Iron reduction in the DAMO/Shewanella oneidensis MR-1 coculture system and the fate of Fe(II).
    Fu L, Li SW, Ding ZW, Ding J, Lu YZ, Zeng RJ.
    Water Res; 2016 Jan 01; 88():808-815. PubMed ID: 26599434
    [Abstract] [Full Text] [Related]

  • 20. Microbial mediated iron redox cycling in Fe (hydr)oxides for nitrite removal.
    Lu Y, Xu L, Shu W, Zhou J, Chen X, Xu Y, Qian G.
    Bioresour Technol; 2017 Jan 01; 224():34-40. PubMed ID: 27806884
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.