These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


370 related items for PubMed ID: 31887331

  • 1. Identification of key HIF-1α target genes that regulate adaptation to hypoxic conditions in Tibetan chicken embryos.
    Zhang Y, Zhang H, Zhang B, Ling Y, Zhang H.
    Gene; 2020 Mar 01; 729():144321. PubMed ID: 31887331
    [Abstract] [Full Text] [Related]

  • 2. Comparative transcriptomic and proteomic analyses provide insights into functional genes for hypoxic adaptation in embryos of Tibetan chickens.
    Zhang Y, Zheng X, Zhang Y, Zhang H, Zhang X, Zhang H.
    Sci Rep; 2020 Jul 08; 10(1):11213. PubMed ID: 32641697
    [Abstract] [Full Text] [Related]

  • 3. [Differential gene expression of hypoxia inducible factor-1alpha and hypoxic adaptation in chicken].
    Wang CF, Wu CX, Li N.
    Yi Chuan; 2007 Jan 08; 29(1):75-80. PubMed ID: 17284428
    [Abstract] [Full Text] [Related]

  • 4. Study on Tibetan Chicken embryonic adaptability to chronic hypoxia by revealing differential gene expression in heart tissue.
    Li M, Zhao C.
    Sci China C Life Sci; 2009 Mar 08; 52(3):284-95. PubMed ID: 19294354
    [Abstract] [Full Text] [Related]

  • 5. [Genetic cloning and expression of hypoxia inducible factor 1 alpha in high altitude hypoxic adaptation species Tibetan antelope (Pantholops hodgsonii)].
    Liu F, Wuren T, Ma L, Yang YZ, Ge RL.
    Sheng Li Xue Bao; 2011 Dec 25; 63(6):565-73. PubMed ID: 22193452
    [Abstract] [Full Text] [Related]

  • 6. Regulatory effects of circular RNA on hypoxia adaptation in chicken embryos.
    Chen X, Zhang Y, Zhang W, Nie R, Bao H, Zhang B, Zhang H.
    J Anim Sci; 2023 Jan 03; 101():. PubMed ID: 37788641
    [Abstract] [Full Text] [Related]

  • 7. HIF-1 regulates energy metabolism of the Tibetan chicken brain during embryo development under hypoxia.
    Tang Q, Xu Q, Ding C, Zhang H, Ling Y, Wu C, Fang M.
    Am J Physiol Regul Integr Comp Physiol; 2021 May 01; 320(5):R704-R713. PubMed ID: 33596720
    [Abstract] [Full Text] [Related]

  • 8. Insights into hypoxic adaptation in Tibetan chicken embryos from comparative proteomics.
    Zhang Y, Gou W, Zhang Y, Zhang H, Wu C.
    Comp Biochem Physiol Part D Genomics Proteomics; 2019 Sep 01; 31():100602. PubMed ID: 31212116
    [Abstract] [Full Text] [Related]

  • 9. Differential responsiveness in VEGF receptor subtypes to hypoxic stress in various tissues of plateau animals.
    Xie HC, Li JG, He JP.
    Physiol Res; 2017 May 04; 66(2):357-362. PubMed ID: 27982675
    [Abstract] [Full Text] [Related]

  • 10. The specific expression pattern of globin mRNAs in Tibetan chicken during late embryonic stage under hypoxia.
    Liu C, Zhang LF, Li N.
    Comp Biochem Physiol A Mol Integr Physiol; 2013 Apr 04; 164(4):638-44. PubMed ID: 23000881
    [Abstract] [Full Text] [Related]

  • 11. Genome Resequencing Identifies Unique Adaptations of Tibetan Chickens to Hypoxia and High-Dose Ultraviolet Radiation in High-Altitude Environments.
    Zhang Q, Gou W, Wang X, Zhang Y, Ma J, Zhang H, Zhang Y, Zhang H.
    Genome Biol Evol; 2016 Feb 23; 8(3):765-76. PubMed ID: 26907498
    [Abstract] [Full Text] [Related]

  • 12. Comprehensive analysis of coding and non-coding RNA transcriptomes related to hypoxic adaptation in Tibetan chickens.
    Zhang Y, Su W, Zhang B, Ling Y, Kim WK, Zhang H.
    J Anim Sci Biotechnol; 2021 May 03; 12(1):60. PubMed ID: 33934713
    [Abstract] [Full Text] [Related]

  • 13. Hypoxia-inducible factor 1α from a high-altitude fish enhances cytoprotection and elevates nitric oxide production in hypoxic environment.
    Wang C, Wu X, Hu X, Jiang H, Chen L, Xu Q.
    Fish Physiol Biochem; 2020 Feb 03; 46(1):39-49. PubMed ID: 31595407
    [Abstract] [Full Text] [Related]

  • 14. Magnolol suppresses hypoxia-induced angiogenesis via inhibition of HIF-1α/VEGF signaling pathway in human bladder cancer cells.
    Chen MC, Lee CF, Huang WH, Chou TC.
    Biochem Pharmacol; 2013 May 01; 85(9):1278-87. PubMed ID: 23416116
    [Abstract] [Full Text] [Related]

  • 15. Genome methylation and regulatory functions for hypoxic adaptation in Tibetan chicken embryos.
    Zhang Y, Gou W, Ma J, Zhang H, Zhang Y, Zhang H.
    PeerJ; 2017 May 01; 5():e3891. PubMed ID: 29018624
    [Abstract] [Full Text] [Related]

  • 16. Small RNA sequencing reveals miRNAs important for hypoxic adaptation in the Tibetan chicken.
    Zhang Z, Qiu M, Du H, Li Q, Yu C, Gan W, Peng H, Xia B, Xiong X, Song X, Yang L, Hu C, Chen J, Yang C, Jiang X.
    Br Poult Sci; 2020 Dec 01; 61(6):632-639. PubMed ID: 32631087
    [Abstract] [Full Text] [Related]

  • 17. Evolutionary selected Tibetan variants of HIF pathway and risk of lung cancer.
    Lanikova L, Reading NS, Hu H, Tashi T, Burjanivova T, Shestakova A, Siwakoti B, Thakur BK, Pun CB, Sapkota A, Abdelaziz S, Feng BJ, Huff CD, Hashibe M, Prchal JT.
    Oncotarget; 2017 Feb 14; 8(7):11739-11747. PubMed ID: 28036300
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 19.