These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. High-resolution genetic mapping of allelic variants associated with cell wall chemistry in Populus. Muchero W, Guo J, DiFazio SP, Chen JG, Ranjan P, Slavov GT, Gunter LE, Jawdy S, Bryan AC, Sykes R, Ziebell A, Klápště J, Porth I, Skyba O, Unda F, El-Kassaby YA, Douglas CJ, Mansfield SD, Martin J, Schackwitz W, Evans LM, Czarnecki O, Tuskan GA. BMC Genomics; 2015 Jan 23; 16(1):24. PubMed ID: 25613058 [Abstract] [Full Text] [Related]
23. In search of a maize ideotype for cell wall enzymatic degradability using histological and biochemical lignin characterization. Méchin V, Argillier O, Rocher F, Hébert Y, Mila I, Pollet B, Barriére Y, Lapierre C. J Agric Food Chem; 2005 Jul 27; 53(15):5872-81. PubMed ID: 16028968 [Abstract] [Full Text] [Related]
27. A Large Transposon Insertion in the stiff1 Promoter Increases Stalk Strength in Maize. Zhang Z, Zhang X, Lin Z, Wang J, Liu H, Zhou L, Zhong S, Li Y, Zhu C, Lai J, Li X, Yu J, Lin Z. Plant Cell; 2020 Jan 27; 32(1):152-165. PubMed ID: 31690654 [Abstract] [Full Text] [Related]
29. Genetic architecture of rind penetrometer resistance in two maize recombinant inbred line populations. Li K, Yan J, Li J, Yang X. BMC Plant Biol; 2014 Jun 03; 14():152. PubMed ID: 24893717 [Abstract] [Full Text] [Related]
31. Mapping quantitative trait loci using naturally occurring genetic variance among commercial inbred lines of maize (Zea mays L.). Zhang YM, Mao Y, Xie C, Smith H, Luo L, Xu S. Genetics; 2005 Apr 03; 169(4):2267-75. PubMed ID: 15716509 [Abstract] [Full Text] [Related]
33. Genome-Wide Association and Gene Co-expression Network Analyses Reveal Complex Genetics of Resistance to Goss's Wilt of Maize. Singh A, Li G, Brohammer AB, Jarquin D, Hirsch CN, Alfano JR, Lorenz AJ. G3 (Bethesda); 2019 Oct 07; 9(10):3139-3152. PubMed ID: 31362973 [Abstract] [Full Text] [Related]
34. QTL mapping analysis of maize plant type based on SNP molecular marker. Zhu W, Zhao Y, Liu J, Huang L, Lu X, Kang D. Cell Mol Biol (Noisy-le-grand); 2019 Feb 28; 65(2):18-27. PubMed ID: 30860467 [Abstract] [Full Text] [Related]
35. krn1, a major quantitative trait locus for kernel row number in maize. Wang J, Lin Z, Zhang X, Liu H, Zhou L, Zhong S, Li Y, Zhu C, Lin Z. New Phytol; 2019 Aug 28; 223(3):1634-1646. PubMed ID: 31059135 [Abstract] [Full Text] [Related]
36. Combined linkage and linkage disequilibrium QTL mapping in multiple families of maize (Zea mays L.) line crosses highlights complementarities between models based on parental haplotype and single locus polymorphism. Bardol N, Ventelon M, Mangin B, Jasson S, Loywick V, Couton F, Derue C, Blanchard P, Charcosset A, Moreau L. Theor Appl Genet; 2013 Nov 28; 126(11):2717-36. PubMed ID: 23975245 [Abstract] [Full Text] [Related]
37. QTL for fibre-related traits in grain × sweet sorghum as a tool for the enhancement of sorghum as a biomass crop. Shiringani AL, Friedt W. Theor Appl Genet; 2011 Oct 28; 123(6):999-1011. PubMed ID: 21739141 [Abstract] [Full Text] [Related]
39. Brachytic2 mutation is able to counteract the main pleiotropic effects of brown midrib3 mutant in maize. Landoni M, Cassani E, Ghidoli M, Colombo F, Sangiorgio S, Papa G, Adani F, Pilu R. Sci Rep; 2022 Feb 14; 12(1):2446. PubMed ID: 35165340 [Abstract] [Full Text] [Related]
40. Extensive genomic characterization of a set of near-isogenic lines for heterotic QTL in maize (Zea mays L.). Pea G, Aung HH, Frascaroli E, Landi P, Pè ME. BMC Genomics; 2013 Jan 29; 14():61. PubMed ID: 23360375 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]