These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


305 related items for PubMed ID: 31893407

  • 1. Fatal Alliance of Hypoxia-/HIF-1α-Driven Microenvironmental Traits Promoting Cancer Progression.
    Vaupel P, Multhoff G.
    Adv Exp Med Biol; 2020; 1232():169-176. PubMed ID: 31893407
    [Abstract] [Full Text] [Related]

  • 2. The Warburg effect: essential part of metabolic reprogramming and central contributor to cancer progression.
    Vaupel P, Schmidberger H, Mayer A.
    Int J Radiat Biol; 2019 Jul; 95(7):912-919. PubMed ID: 30822194
    [Abstract] [Full Text] [Related]

  • 3. Hypoxia-/HIF-1α-Driven Factors of the Tumor Microenvironment Impeding Antitumor Immune Responses and Promoting Malignant Progression.
    Vaupel P, Multhoff G.
    Adv Exp Med Biol; 2018 Jul; 1072():171-175. PubMed ID: 30178341
    [Abstract] [Full Text] [Related]

  • 4. Tumor microenvironment and metabolic synergy in breast cancers: critical importance of mitochondrial fuels and function.
    Martinez-Outschoorn U, Sotgia F, Lisanti MP.
    Semin Oncol; 2014 Apr; 41(2):195-216. PubMed ID: 24787293
    [Abstract] [Full Text] [Related]

  • 5. Revisiting the Warburg effect: historical dogma versus current understanding.
    Vaupel P, Multhoff G.
    J Physiol; 2021 Mar; 599(6):1745-1757. PubMed ID: 33347611
    [Abstract] [Full Text] [Related]

  • 6. Wortmannin influences hypoxia-inducible factor-1 alpha expression and glycolysis in esophageal carcinoma cells.
    Zeng L, Zhou HY, Tang NN, Zhang WF, He GJ, Hao B, Feng YD, Zhu H.
    World J Gastroenterol; 2016 May 28; 22(20):4868-80. PubMed ID: 27239113
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Hypoxia-Driven Adenosine Accumulation: A Crucial Microenvironmental Factor Promoting Tumor Progression.
    Vaupel P, Mayer A.
    Adv Exp Med Biol; 2016 May 28; 876():177-183. PubMed ID: 26782210
    [Abstract] [Full Text] [Related]

  • 9. The Key Role of the WNT/β-Catenin Pathway in Metabolic Reprogramming in Cancers under Normoxic Conditions.
    Vallée A, Lecarpentier Y, Vallée JN.
    Cancers (Basel); 2021 Nov 05; 13(21):. PubMed ID: 34771718
    [Abstract] [Full Text] [Related]

  • 10. Metabolic targeting of HIF-dependent glycolysis reduces lactate, increases oxygen consumption and enhances response to high-dose single-fraction radiotherapy in hypoxic solid tumors.
    Leung E, Cairns RA, Chaudary N, Vellanki RN, Kalliomaki T, Moriyama EH, Mujcic H, Wilson BC, Wouters BG, Hill R, Milosevic M.
    BMC Cancer; 2017 Jun 15; 17(1):418. PubMed ID: 28619042
    [Abstract] [Full Text] [Related]

  • 11. Lactate activates HIF-1 in oxidative but not in Warburg-phenotype human tumor cells.
    De Saedeleer CJ, Copetti T, Porporato PE, Verrax J, Feron O, Sonveaux P.
    PLoS One; 2012 Jun 15; 7(10):e46571. PubMed ID: 23082126
    [Abstract] [Full Text] [Related]

  • 12. Systemic oxygenation weakens the hypoxia and hypoxia inducible factor 1α-dependent and extracellular adenosine-mediated tumor protection.
    Hatfield SM, Kjaergaard J, Lukashev D, Belikoff B, Schreiber TH, Sethumadhavan S, Abbott R, Philbrook P, Thayer M, Shujia D, Rodig S, Kutok JL, Ren J, Ohta A, Podack ER, Karger B, Jackson EK, Sitkovsky M.
    J Mol Med (Berl); 2014 Dec 15; 92(12):1283-92. PubMed ID: 25120128
    [Abstract] [Full Text] [Related]

  • 13. HIF-1alpha modulates energy metabolism in cancer cells by inducing over-expression of specific glycolytic isoforms.
    Marín-Hernández A, Gallardo-Pérez JC, Ralph SJ, Rodríguez-Enríquez S, Moreno-Sánchez R.
    Mini Rev Med Chem; 2009 Aug 15; 9(9):1084-101. PubMed ID: 19689405
    [Abstract] [Full Text] [Related]

  • 14. MiR-3662 suppresses hepatocellular carcinoma growth through inhibition of HIF-1α-mediated Warburg effect.
    Chen Z, Zuo X, Zhang Y, Han G, Zhang L, Wu J, Wang X.
    Cell Death Dis; 2018 May 01; 9(5):549. PubMed ID: 29748591
    [Abstract] [Full Text] [Related]

  • 15. Inhibition of Aerobic Glycolysis Represses Akt/mTOR/HIF-1α Axis and Restores Tamoxifen Sensitivity in Antiestrogen-Resistant Breast Cancer Cells.
    Woo YM, Shin Y, Lee EJ, Lee S, Jeong SH, Kong HK, Park EY, Kim HK, Han J, Chang M, Park JH.
    PLoS One; 2015 May 01; 10(7):e0132285. PubMed ID: 26158266
    [Abstract] [Full Text] [Related]

  • 16. Hypoxia-inducible factor-1alpha and the glycolytic phenotype in tumors.
    Robey IF, Lien AD, Welsh SJ, Baggett BK, Gillies RJ.
    Neoplasia; 2005 Apr 01; 7(4):324-30. PubMed ID: 15967109
    [Abstract] [Full Text] [Related]

  • 17. Hypoxia-inducible transcription factor-1alpha promotes hypoxia-induced A549 apoptosis via a mechanism that involves the glycolysis pathway.
    Luo F, Liu X, Yan N, Li S, Cao G, Cheng Q, Xia Q, Wang H.
    BMC Cancer; 2006 Jan 27; 6():26. PubMed ID: 16438736
    [Abstract] [Full Text] [Related]

  • 18. Extracellular vesicle-packaged HIF-1α-stabilizing lncRNA from tumour-associated macrophages regulates aerobic glycolysis of breast cancer cells.
    Chen F, Chen J, Yang L, Liu J, Zhang X, Zhang Y, Tu Q, Yin D, Lin D, Wong PP, Huang D, Xing Y, Zhao J, Li M, Liu Q, Su F, Su S, Song E.
    Nat Cell Biol; 2019 Apr 27; 21(4):498-510. PubMed ID: 30936474
    [Abstract] [Full Text] [Related]

  • 19. Magnolol suppresses hypoxia-induced angiogenesis via inhibition of HIF-1α/VEGF signaling pathway in human bladder cancer cells.
    Chen MC, Lee CF, Huang WH, Chou TC.
    Biochem Pharmacol; 2013 May 01; 85(9):1278-87. PubMed ID: 23416116
    [Abstract] [Full Text] [Related]

  • 20. HIF-1α promoted vasculogenic mimicry formation in hepatocellular carcinoma through LOXL2 up-regulation in hypoxic tumor microenvironment.
    Wang M, Zhao X, Zhu D, Liu T, Liang X, Liu F, Zhang Y, Dong X, Sun B.
    J Exp Clin Cancer Res; 2017 Apr 27; 36(1):60. PubMed ID: 28449718
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 16.