These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


253 related items for PubMed ID: 31895557

  • 1. Evolution of Substrates and Components of the Pro/N-Degron Pathway.
    Chen SJ, Melnykov A, Varshavsky A.
    Biochemistry; 2020 Feb 04; 59(4):582-593. PubMed ID: 31895557
    [Abstract] [Full Text] [Related]

  • 2. An N-end rule pathway that recognizes proline and destroys gluconeogenic enzymes.
    Chen SJ, Wu X, Wadas B, Oh JH, Varshavsky A.
    Science; 2017 Jan 27; 355(6323):. PubMed ID: 28126757
    [Abstract] [Full Text] [Related]

  • 3. Recognition of nonproline N-terminal residues by the Pro/N-degron pathway.
    Dong C, Chen SJ, Melnykov A, Weirich S, Sun K, Jeltsch A, Varshavsky A, Min J.
    Proc Natl Acad Sci U S A; 2020 Jun 23; 117(25):14158-14167. PubMed ID: 32513738
    [Abstract] [Full Text] [Related]

  • 4. Crystal structure of yeast Gid10 in complex with Pro/N-degron.
    Shin JS, Park SH, Kim L, Heo J, Song HK.
    Biochem Biophys Res Commun; 2021 Dec 10; 582():86-92. PubMed ID: 34695755
    [Abstract] [Full Text] [Related]

  • 5. Gid10 as an alternative N-recognin of the Pro/N-degron pathway.
    Melnykov A, Chen SJ, Varshavsky A.
    Proc Natl Acad Sci U S A; 2019 Aug 06; 116(32):15914-15923. PubMed ID: 31337681
    [Abstract] [Full Text] [Related]

  • 6. Recognition of gluconeogenic enzymes; Icl1, Fbp1, and Mdh2 by Gid4 ligase: A molecular docking study.
    Elfiky AA, Ismail AM, Elshemey WM.
    J Mol Recognit; 2020 May 06; 33(5):e2831. PubMed ID: 31863529
    [Abstract] [Full Text] [Related]

  • 7. Aminopeptidases trim Xaa-Pro proteins, initiating their degradation by the Pro/N-degron pathway.
    Chen SJ, Kim L, Song HK, Varshavsky A.
    Proc Natl Acad Sci U S A; 2021 Oct 26; 118(43):. PubMed ID: 34663735
    [Abstract] [Full Text] [Related]

  • 8. Differences in regulation of yeast gluconeogenesis revealed by Cat8p-independent activation of PCK1 and FBP1 genes in Kluyveromyces lactis.
    Georis I, Krijger JJ, Breunig KD, Vandenhaute J.
    Mol Gen Genet; 2000 Sep 26; 264(1-2):193-203. PubMed ID: 11016849
    [Abstract] [Full Text] [Related]

  • 9. Regulation of the Gid ubiquitin ligase recognition subunit Gid4.
    Menssen R, Bui K, Wolf DH.
    FEBS Lett; 2018 Oct 26; 592(19):3286-3294. PubMed ID: 30136317
    [Abstract] [Full Text] [Related]

  • 10. Molecular basis of GID4-mediated recognition of degrons for the Pro/N-end rule pathway.
    Dong C, Zhang H, Li L, Tempel W, Loppnau P, Min J.
    Nat Chem Biol; 2018 May 26; 14(5):466-473. PubMed ID: 29632410
    [Abstract] [Full Text] [Related]

  • 11. Fructose-1,6-bisphosphatase of the yeast Kluyveromyces lactis.
    Zaror I, Marcus F, Moyer DL, Tung J, Shuster JR.
    Eur J Biochem; 1993 Feb 15; 212(1):193-9. PubMed ID: 8383039
    [Abstract] [Full Text] [Related]

  • 12. A reference-based protein degradation assay without global translation inhibitors.
    Oh JH, Chen SJ, Varshavsky A.
    J Biol Chem; 2017 Dec 29; 292(52):21457-21465. PubMed ID: 29122887
    [Abstract] [Full Text] [Related]

  • 13. GID E3 ligase supramolecular chelate assembly configures multipronged ubiquitin targeting of an oligomeric metabolic enzyme.
    Sherpa D, Chrustowicz J, Qiao S, Langlois CR, Hehl LA, Gottemukkala KV, Hansen FM, Karayel O, von Gronau S, Prabu JR, Mann M, Alpi AF, Schulman BA.
    Mol Cell; 2021 Jun 03; 81(11):2445-2459.e13. PubMed ID: 33905682
    [Abstract] [Full Text] [Related]

  • 14. Cryo-EM structures of Gid12-bound GID E3 reveal steric blockade as a mechanism inhibiting substrate ubiquitylation.
    Qiao S, Lee CW, Sherpa D, Chrustowicz J, Cheng J, Duennebacke M, Steigenberger B, Karayel O, Vu DT, von Gronau S, Mann M, Wilfling F, Schulman BA.
    Nat Commun; 2022 Jun 01; 13(1):3041. PubMed ID: 35650207
    [Abstract] [Full Text] [Related]

  • 15. Five enzymes of the Arg/N-degron pathway form a targeting complex: The concept of superchanneling.
    Oh JH, Hyun JY, Chen SJ, Varshavsky A.
    Proc Natl Acad Sci U S A; 2020 May 19; 117(20):10778-10788. PubMed ID: 32366662
    [Abstract] [Full Text] [Related]

  • 16. Multifaceted N-Degron Recognition and Ubiquitylation by GID/CTLH E3 Ligases.
    Chrustowicz J, Sherpa D, Teyra J, Loke MS, Popowicz GM, Basquin J, Sattler M, Prabu JR, Sidhu SS, Schulman BA.
    J Mol Biol; 2022 Jan 30; 434(2):167347. PubMed ID: 34767800
    [Abstract] [Full Text] [Related]

  • 17. The yeast GID complex, a novel ubiquitin ligase (E3) involved in the regulation of carbohydrate metabolism.
    Santt O, Pfirrmann T, Braun B, Juretschke J, Kimmig P, Scheel H, Hofmann K, Thumm M, Wolf DH.
    Mol Biol Cell; 2008 Aug 30; 19(8):3323-33. PubMed ID: 18508925
    [Abstract] [Full Text] [Related]

  • 18. Proteins of newly isolated mutants and the amino-terminal proline are essential for ubiquitin-proteasome-catalyzed catabolite degradation of fructose-1,6-bisphosphatase of Saccharomyces cerevisiae.
    Hämmerle M, Bauer J, Rose M, Szallies A, Thumm M, Düsterhus S, Mecke D, Entian KD, Wolf DH.
    J Biol Chem; 1998 Sep 25; 273(39):25000-5. PubMed ID: 9737955
    [Abstract] [Full Text] [Related]

  • 19. Evolution of the alcohol dehydrogenase (ADH) genes in yeast: characterization of a fourth ADH in Kluyveromyces lactis.
    Shain DH, Salvadore C, Denis CL.
    Mol Gen Genet; 1992 Apr 25; 232(3):479-88. PubMed ID: 1588917
    [Abstract] [Full Text] [Related]

  • 20. Recognition of the gluconeogenic enzyme, Pck1, via the Gid4 E3 ligase: An in silico perspective.
    Ismail AM, Elfiky AA, Elshemey WM.
    J Mol Recognit; 2020 Mar 25; 33(3):e2821. PubMed ID: 31883179
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 13.