These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


265 related items for PubMed ID: 31898146

  • 21. Developmental transcriptome analysis of floral transition in Rosa odorata var. gigantea.
    Guo X, Yu C, Luo L, Wan H, Zhen N, Li Y, Cheng T, Wang J, Pan H, Zhang Q.
    Plant Mol Biol; 2018 May; 97(1-2):113-130. PubMed ID: 29736762
    [Abstract] [Full Text] [Related]

  • 22. Global analysis of the AP2/ERF gene family in rose (Rosa chinensis) genome unveils the role of RcERF099 in Botrytis resistance.
    Li D, Liu X, Shu L, Zhang H, Zhang S, Song Y, Zhang Z.
    BMC Plant Biol; 2020 Nov 23; 20(1):533. PubMed ID: 33228522
    [Abstract] [Full Text] [Related]

  • 23. Expansion and Functional Divergence of Jumonji C-Containing Histone Demethylases: Significance of Duplications in Ancestral Angiosperms and Vertebrates.
    Qian S, Wang Y, Ma H, Zhang L.
    Plant Physiol; 2015 Aug 23; 168(4):1321-37. PubMed ID: 26059336
    [Abstract] [Full Text] [Related]

  • 24. JMJ27, an Arabidopsis H3K9 histone demethylase, modulates defense against Pseudomonas syringae and flowering time.
    Dutta A, Choudhary P, Caruana J, Raina R.
    Plant J; 2017 Sep 23; 91(6):1015-1028. PubMed ID: 28650521
    [Abstract] [Full Text] [Related]

  • 25. Comparative RNA-seq analysis of transcriptome dynamics during petal development in Rosa chinensis.
    Han Y, Wan H, Cheng T, Wang J, Yang W, Pan H, Zhang Q.
    Sci Rep; 2017 Feb 22; 7():43382. PubMed ID: 28225056
    [Abstract] [Full Text] [Related]

  • 26. A high-quality genome sequence of Rosa chinensis to elucidate ornamental traits.
    Hibrand Saint-Oyant L, Ruttink T, Hamama L, Kirov I, Lakhwani D, Zhou NN, Bourke PM, Daccord N, Leus L, Schulz D, Van de Geest H, Hesselink T, Van Laere K, Debray K, Balzergue S, Thouroude T, Chastellier A, Jeauffre J, Voisine L, Gaillard S, Borm TJA, Arens P, Voorrips RE, Maliepaard C, Neu E, Linde M, Le Paslier MC, Bérard A, Bounon R, Clotault J, Choisne N, Quesneville H, Kawamura K, Aubourg S, Sakr S, Smulders MJM, Schijlen E, Bucher E, Debener T, De Riek J, Foucher F.
    Nat Plants; 2018 Jul 22; 4(7):473-484. PubMed ID: 29892093
    [Abstract] [Full Text] [Related]

  • 27. Genome-wide identification, classification and expression analysis of the JmjC domain-containing histone demethylase gene family in Jatropha curcas L.
    Wang J, Jiang X, Bai H, Liu C.
    Sci Rep; 2022 Apr 21; 12(1):6543. PubMed ID: 35449230
    [Abstract] [Full Text] [Related]

  • 28. AfLFY, a LEAFY homolog in Argyranthemum frutescens, controls flowering time and leaf development.
    Hu J, Jin Q, Ma Y.
    Sci Rep; 2020 Jan 31; 10(1):1616. PubMed ID: 32005948
    [Abstract] [Full Text] [Related]

  • 29. Genome-Wide Analysis of Soybean JmjC Domain-Containing Proteins Suggests Evolutionary Conservation Following Whole-Genome Duplication.
    Han Y, Li X, Cheng L, Liu Y, Wang H, Ke D, Yuan H, Zhang L, Wang L.
    Front Plant Sci; 2016 Jan 31; 7():1800. PubMed ID: 27994610
    [Abstract] [Full Text] [Related]

  • 30. Comparative genome-wide identification and characterization of SET domain-containing and JmjC domain-containing proteins in piroplasms.
    Liang Q, Zhang S, Liu Z, Wang J, Yin H, Guan G, You C.
    BMC Genomics; 2024 Aug 26; 25(1):804. PubMed ID: 39187768
    [Abstract] [Full Text] [Related]

  • 31. Evolutionary History and Functional Diversification of the JmjC Domain-Containing Histone Demethylase Gene Family in Plants.
    Ma S, Zhang Z, Long Y, Huo W, Zhang Y, Yang X, Zhang J, Li X, Du Q, Liu W, Yang D, Ma X.
    Plants (Basel); 2022 Apr 12; 11(8):. PubMed ID: 35448769
    [Abstract] [Full Text] [Related]

  • 32. Identification and characterization of histone lysine methylation modifiers in Fragaria vesca.
    Gu T, Han Y, Huang R, McAvoy RJ, Li Y.
    Sci Rep; 2016 Apr 06; 6():23581. PubMed ID: 27049067
    [Abstract] [Full Text] [Related]

  • 33. New resources for studying the rose flowering process.
    Foucher F, Chevalier M, Corre C, Soufflet-Freslon V, Legeai F, Hibrand-Saint Oyant L.
    Genome; 2008 Oct 06; 51(10):827-37. PubMed ID: 18923534
    [Abstract] [Full Text] [Related]

  • 34. Tinkering with the C-function: a molecular frame for the selection of double flowers in cultivated roses.
    Dubois A, Raymond O, Maene M, Baudino S, Langlade NB, Boltz V, Vergne P, Bendahmane M.
    PLoS One; 2010 Feb 18; 5(2):e9288. PubMed ID: 20174587
    [Abstract] [Full Text] [Related]

  • 35. Low temperature-induced DNA hypermethylation attenuates expression of RhAG, an AGAMOUS homolog, and increases petal number in rose (Rosa hybrida).
    Ma N, Chen W, Fan T, Tian Y, Zhang S, Zeng D, Li Y.
    BMC Plant Biol; 2015 Oct 05; 15():237. PubMed ID: 26438149
    [Abstract] [Full Text] [Related]

  • 36. A companion cell-dominant and developmentally regulated H3K4 demethylase controls flowering time in Arabidopsis via the repression of FLC expression.
    Yang H, Han Z, Cao Y, Fan D, Li H, Mo H, Feng Y, Liu L, Wang Z, Yue Y, Cui S, Chen S, Chai J, Ma L.
    PLoS Genet; 2012 Oct 05; 8(4):e1002664. PubMed ID: 22536163
    [Abstract] [Full Text] [Related]

  • 37. Genome-wide identification of WD40 genes reveals a functional diversification of COP1-like genes in Rosaceae.
    Sun YB, Zhang XJ, Zhong MC, Dong X, Yu DM, Jiang XD, Wang D, Cui WH, Chen JH, Hu JY.
    Plant Mol Biol; 2020 Sep 05; 104(1-2):81-95. PubMed ID: 32621166
    [Abstract] [Full Text] [Related]

  • 38. Genome-wide expression of low temperature response genes in Rosa hybrida L.
    Dos Reis MV, Rouhana LV, Sadeque A, Koga L, Clough SJ, Calla B, Paiva PDO, Korban SS.
    Plant Physiol Biochem; 2020 Jan 05; 146():238-248. PubMed ID: 31765955
    [Abstract] [Full Text] [Related]

  • 39. The Rosa genome provides new insights into the domestication of modern roses.
    Raymond O, Gouzy J, Just J, Badouin H, Verdenaud M, Lemainque A, Vergne P, Moja S, Choisne N, Pont C, Carrère S, Caissard JC, Couloux A, Cottret L, Aury JM, Szécsi J, Latrasse D, Madoui MA, François L, Fu X, Yang SH, Dubois A, Piola F, Larrieu A, Perez M, Labadie K, Perrier L, Govetto B, Labrousse Y, Villand P, Bardoux C, Boltz V, Lopez-Roques C, Heitzler P, Vernoux T, Vandenbussche M, Quesneville H, Boualem A, Bendahmane A, Liu C, Le Bris M, Salse J, Baudino S, Benhamed M, Wincker P, Bendahmane M.
    Nat Genet; 2018 Jun 05; 50(6):772-777. PubMed ID: 29713014
    [Abstract] [Full Text] [Related]

  • 40. Disruption of transcription factor RhMYB123 causes the transformation of stamen to malformed petal in rose (Rosa hybrida).
    Li K, Li Y, Wang Y, Li Y, He J, Li Y, Du L, Gao Y, Ma N, Gao J, Zhou X.
    Plant Cell Rep; 2022 Dec 05; 41(12):2293-2303. PubMed ID: 35999377
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 14.