These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


210 related items for PubMed ID: 31899249

  • 1. Stimulation of cell growth by addition of tungsten in batch culture of a methanotrophic bacterium, Methylomicrobium alcaliphilum 20Z on methane and methanol.
    Cho S, Ha S, Kim HS, Han JH, Kim H, Yeon YJ, Na JG, Lee J.
    J Biotechnol; 2020 Feb 10; 309():81-84. PubMed ID: 31899249
    [Abstract] [Full Text] [Related]

  • 2. High production of ectoine from methane in genetically engineered Methylomicrobium alcaliphilum 20Z by preventing ectoine degradation.
    Lim SE, Cho S, Choi Y, Na JG, Lee J.
    Microb Cell Fact; 2024 May 02; 23(1):127. PubMed ID: 38698430
    [Abstract] [Full Text] [Related]

  • 3. Methane utilization in Methylomicrobium alcaliphilum 20ZR: a systems approach.
    Akberdin IR, Thompson M, Hamilton R, Desai N, Alexander D, Henard CA, Guarnieri MT, Kalyuzhnaya MG.
    Sci Rep; 2018 Feb 06; 8(1):2512. PubMed ID: 29410419
    [Abstract] [Full Text] [Related]

  • 4. Bioreactor performance parameters for an industrially-promising methanotroph Methylomicrobium buryatense 5GB1.
    Gilman A, Laurens LM, Puri AW, Chu F, Pienkos PT, Lidstrom ME.
    Microb Cell Fact; 2015 Nov 16; 14():182. PubMed ID: 26572866
    [Abstract] [Full Text] [Related]

  • 5. Enhanced production of ectoine from methane using metabolically engineered Methylomicrobium alcaliphilum 20Z.
    Cho S, Lee YS, Chai H, Lim SE, Na JG, Lee J.
    Biotechnol Biofuels Bioprod; 2022 Jan 13; 15(1):5. PubMed ID: 35418141
    [Abstract] [Full Text] [Related]

  • 6. Biological conversion of methane to putrescine using genome-scale model-guided metabolic engineering of a methanotrophic bacterium Methylomicrobium alcaliphilum 20Z.
    Nguyen LT, Lee EY.
    Biotechnol Biofuels; 2019 Jan 13; 12():147. PubMed ID: 31223337
    [Abstract] [Full Text] [Related]

  • 7. Transcriptomic and Metabolomic Responses to Carbon and Nitrogen Sources in Methylomicrobium album BG8.
    Sugden S, Lazic M, Sauvageau D, Stein LY.
    Appl Environ Microbiol; 2021 Jun 11; 87(13):e0038521. PubMed ID: 33893121
    [Abstract] [Full Text] [Related]

  • 8. A flexible microbial co-culture platform for simultaneous utilization of methane and carbon dioxide from gas feedstocks.
    Hill EA, Chrisler WB, Beliaev AS, Bernstein HC.
    Bioresour Technol; 2017 Mar 11; 228():250-256. PubMed ID: 28092828
    [Abstract] [Full Text] [Related]

  • 9. Systematic metabolic engineering of Methylomicrobium alcaliphilum 20Z for 2,3-butanediol production from methane.
    Nguyen AD, Hwang IY, Lee OK, Kim D, Kalyuzhnaya MG, Mariyana R, Hadiyati S, Kim MS, Lee EY.
    Metab Eng; 2018 May 11; 47():323-333. PubMed ID: 29673960
    [Abstract] [Full Text] [Related]

  • 10. Genome-scale evaluation of core one-carbon metabolism in gammaproteobacterial methanotrophs grown on methane and methanol.
    Nguyen AD, Park JY, Hwang IY, Hamilton R, Kalyuzhnaya MG, Kim D, Lee EY.
    Metab Eng; 2020 Jan 11; 57():1-12. PubMed ID: 31626985
    [Abstract] [Full Text] [Related]

  • 11. Batch conversion of methane to methanol using Methylosinus trichosporium OB3b as biocatalyst.
    Hwang IY, Hur DH, Lee JH, Park CH, Chang IS, Lee JW, Lee EY.
    J Microbiol Biotechnol; 2015 Mar 11; 25(3):375-80. PubMed ID: 25563419
    [Abstract] [Full Text] [Related]

  • 12. [Primary characterization of dominant cell surface proteins of halotolerant methanotroph Methylomicrobium alcaliphilum 20Z].
    Shchukin VN, Khmelenina VN, Eshinimaev BTs, Suzina NE, Trotsenko IuA.
    Mikrobiologiia; 2011 Mar 11; 80(5):595-605. PubMed ID: 22168002
    [No Abstract] [Full Text] [Related]

  • 13. Phosphoketolase overexpression increases biomass and lipid yield from methane in an obligate methanotrophic biocatalyst.
    Henard CA, Smith HK, Guarnieri MT.
    Metab Eng; 2017 May 11; 41():152-158. PubMed ID: 28377275
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Metabolic role of pyrophosphate-linked phosphofructokinase pfk for C1 assimilation in Methylotuvimicrobium alcaliphilum 20Z.
    Nguyen AD, Nam G, Kim D, Lee EY.
    Microb Cell Fact; 2020 Jun 16; 19(1):131. PubMed ID: 32546161
    [Abstract] [Full Text] [Related]

  • 17. Serine-glyoxylate aminotranferases from methanotrophs using different C1-assimilation pathways.
    But SY, Egorova SV, Khmelenina VN, Trotsenko YA.
    Antonie Van Leeuwenhoek; 2019 May 16; 112(5):741-751. PubMed ID: 30511326
    [Abstract] [Full Text] [Related]

  • 18. Identification of a fourth formate dehydrogenase in Methylobacterium extorquens AM1 and confirmation of the essential role of formate oxidation in methylotrophy.
    Chistoserdova L, Crowther GJ, Vorholt JA, Skovran E, Portais JC, Lidstrom ME.
    J Bacteriol; 2007 Dec 16; 189(24):9076-81. PubMed ID: 17921299
    [Abstract] [Full Text] [Related]

  • 19. [Highly efficient methane assimilation through Embden-Meyerhof-Parnas pathway in Methylomicrobium alcaliphilum 20Z].
    Cui J, Yao L, Sun X, Kalyuzhnaya MG, Yang S.
    Sheng Wu Gong Cheng Xue Bao; 2014 Jan 16; 30(1):43-54. PubMed ID: 24818478
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.