These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
499 related items for PubMed ID: 31900169
1. Reliability, validity and discriminant ability of a robotic device for finger training in patients with subacute stroke. Germanotta M, Gower V, Papadopoulou D, Cruciani A, Pecchioli C, Mosca R, Speranza G, Falsini C, Cecchi F, Vannetti F, Montesano A, Galeri S, Gramatica F, Aprile I, FDG Robotic Rehabilitation Group. J Neuroeng Rehabil; 2020 Jan 03; 17(1):1. PubMed ID: 31900169 [Abstract] [Full Text] [Related]
3. Effects of a Soft Robotic Hand for Hand Rehabilitation in Chronic Stroke Survivors. Shi XQ, Heung HL, Tang ZQ, Li Z, Tong KY. J Stroke Cerebrovasc Dis; 2021 Jul 03; 30(7):105812. PubMed ID: 33895427 [Abstract] [Full Text] [Related]
5. Evaluation of finger strength and spasticity in hemiplegic patients using hand-finger robotic device: A validity and reliability study. Adar S, Demircan A, Akçin Aİ, Dündar Ü, Toktaş H, Yeşil H, Eroğlu S, Eyvaz N, Beştaş E, Köseoğlu Toksoy C. Medicine (Baltimore); 2023 Dec 08; 102(49):e36479. PubMed ID: 38065919 [Abstract] [Full Text] [Related]
6. KAPS (kinematic assessment of passive stretch): a tool to assess elbow flexor and extensor spasticity after stroke using a robotic exoskeleton. Centen A, Lowrey CR, Scott SH, Yeh TT, Mochizuki G. J Neuroeng Rehabil; 2017 Jun 19; 14(1):59. PubMed ID: 28629415 [Abstract] [Full Text] [Related]
8. Clinical usefulness and validity of robotic measures of reaching movement in hemiparetic stroke patients. Otaka E, Otaka Y, Kasuga S, Nishimoto A, Yamazaki K, Kawakami M, Ushiba J, Liu M. J Neuroeng Rehabil; 2015 Aug 12; 12():66. PubMed ID: 26265327 [Abstract] [Full Text] [Related]
10. Spasticity evaluation with the Amadeo Tyromotion device in patients with hemispheric stroke. Urrutia R, Miren Gutiérrez-Muto A, Sanz-Morère CB, Gómez A, Politi AM, Lunardini F, Baccini M, Cecchi F, León N, Oliviero A, Tornero J. Front Neurorobot; 2023 Aug 12; 17():1172770. PubMed ID: 37483539 [Abstract] [Full Text] [Related]
12. Characterization and wearability evaluation of a fully portable wrist exoskeleton for unsupervised training after stroke. Lambelet C, Temiraliuly D, Siegenthaler M, Wirth M, Woolley DG, Lambercy O, Gassert R, Wenderoth N. J Neuroeng Rehabil; 2020 Oct 07; 17(1):132. PubMed ID: 33028354 [Abstract] [Full Text] [Related]
14. Robotic-assisted rehabilitation of the upper limb after acute stroke. Masiero S, Celia A, Rosati G, Armani M. Arch Phys Med Rehabil; 2007 Feb 07; 88(2):142-9. PubMed ID: 17270510 [Abstract] [Full Text] [Related]
15. Design of a 3D Printed Soft Robotic Hand for Stroke Rehabilitation and Daily Activities Assistance. Heung KHL, Tang ZQ, Ho L, Tung M, Li Z, Tong RKY. IEEE Int Conf Rehabil Robot; 2019 Jun 07; 2019():65-70. PubMed ID: 31374608 [Abstract] [Full Text] [Related]
16. Effects of electromyography-driven robot-aided hand training with neuromuscular electrical stimulation on hand control performance after chronic stroke. Rong W, Tong KY, Hu XL, Ho SK. Disabil Rehabil Assist Technol; 2015 Mar 07; 10(2):149-59. PubMed ID: 24377757 [Abstract] [Full Text] [Related]
18. Fine finger motor skill training with exoskeleton robotic hand in chronic stroke: stroke rehabilitation. Ockenfeld C, Tong RK, Susanto EA, Ho SK, Hu XL. IEEE Int Conf Rehabil Robot; 2013 Jun 07; 2013():6650392. PubMed ID: 24187211 [Abstract] [Full Text] [Related]
20. Distal versus proximal - an investigation on different supportive strategies by robots for upper limb rehabilitation after stroke: a randomized controlled trial. Qian Q, Nam C, Guo Z, Huang Y, Hu X, Ng SC, Zheng Y, Poon W. J Neuroeng Rehabil; 2019 Jun 03; 16(1):64. PubMed ID: 31159822 [Abstract] [Full Text] [Related] Page: [Next] [New Search]