These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
199 related items for PubMed ID: 31900741
21. "Cone dystrophy with supernormal rod electroretinogram": a comprehensive genotype/phenotype study including fundus autofluorescence and extensive electrophysiology. Robson AG, Webster AR, Michaelides M, Downes SM, Cowing JA, Hunt DM, Moore AT, Holder GE. Retina; 2010 Jan; 30(1):51-62. PubMed ID: 19952985 [Abstract] [Full Text] [Related]
22. Human retinal dark adaptation tracked in vivo with the electroretinogram: insights into processes underlying recovery of cone- and rod-mediated vision. Jiang X, Mahroo OA. J Physiol; 2022 Nov; 600(21):4603-4621. PubMed ID: 35612091 [Abstract] [Full Text] [Related]
23. Two cases of unilateral cone-rod dysfunction with negative electroretinograms. Ozawa K, Takahashi S, Mochizuki K, Miyake Y. Doc Ophthalmol; 2019 Dec; 139(3):247-256. PubMed ID: 31375969 [Abstract] [Full Text] [Related]
24. Acute unilateral inner retinal dysfunction with photophobia: importance of electrodiagnosis. Hirakata T, Fujinami K, Saito W, Kanda A, Hirakata A, Ishida S, Murakami A, Tsunoda K, Miyake Y. Jpn J Ophthalmol; 2021 Jan; 65(1):42-53. PubMed ID: 33180210 [Abstract] [Full Text] [Related]
25. Novel biallelic TRPM1 variants in an elderly patient with complete congenital stationary night blindness. Hayashi T, Mizobuchi K, Kikuchi S, Nakano T. Doc Ophthalmol; 2021 Apr; 142(2):265-273. PubMed ID: 33068213 [Abstract] [Full Text] [Related]
28. Cone dystrophy with "supernormal" rod ERG: psychophysical testing shows comparable rod and cone temporal sensitivity losses with no gain in rod function. Stockman A, Henning GB, Michaelides M, Moore AT, Webster AR, Cammack J, Ripamonti C. Invest Ophthalmol Vis Sci; 2014 Feb 10; 55(2):832-40. PubMed ID: 24370833 [Abstract] [Full Text] [Related]
33. Electroretinographic (ERG) responses in pediatric patients using vigabatrin. Moskowitz A, Hansen RM, Eklund SE, Fulton AB. Doc Ophthalmol; 2012 Jun 10; 124(3):197-209. PubMed ID: 22426576 [Abstract] [Full Text] [Related]
34. Autosomal dominant congenital stationary night blindness and normal fundus with an electronegative electroretinogram. Noble KG, Carr RE, Siegel IM. Am J Ophthalmol; 1990 Jan 15; 109(1):44-8. PubMed ID: 2297031 [Abstract] [Full Text] [Related]
35. Verifying complaints of difficulties in night vision using electroretinography and dark adaptation tests. Allon G, Friedrich Y, Mezer E, Itzhaki A, Leibu R, Perlman I. Doc Ophthalmol; 2020 Apr 15; 140(2):169-180. PubMed ID: 31621038 [Abstract] [Full Text] [Related]
36. Clinical course of two siblings with potassium voltage-gated channel modifier subfamily V member 2 (KCNV2)-associated retinopathy. Sato T, Kuniyoshi K, Hayashi T, Nishiwaki H, Mizobuchi K, Kusaka S. Doc Ophthalmol; 2024 Jun 15; 148(3):173-182. PubMed ID: 38630375 [Abstract] [Full Text] [Related]
37. A Japanese pedigree of autosomal dominant congenital stationary night blindness with variable expressivity. Hayakawa M, Imai Y, Wakita M, Kato K, Yanashima K, Miyake Y, Kanai A. Ophthalmic Paediatr Genet; 1992 Dec 15; 13(4):211-7. PubMed ID: 1488221 [Abstract] [Full Text] [Related]
38. RP cone-rod degeneration. Heckenlively JR. Trans Am Ophthalmol Soc; 1987 Dec 15; 85():438-70. PubMed ID: 3447340 [Abstract] [Full Text] [Related]
39. Electrophysiologic and phenotypic features of an autosomal cone-rod dystrophy caused by a novel CRX mutation. Lines MA, Hébert M, McTaggart KE, Flynn SJ, Tennant MT, MacDonald IM. Ophthalmology; 2002 Oct 15; 109(10):1862-70. PubMed ID: 12359607 [Abstract] [Full Text] [Related]
40. A circadian clock regulates the process of ERG b- and d-wave dominance transition in dark-adapted zebrafish. Ren JQ, Li L. Vision Res; 2004 Oct 15; 44(18):2147-52. PubMed ID: 15183681 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]