These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
505 related items for PubMed ID: 31918065
1. A fully convolutional neural network for new T2-w lesion detection in multiple sclerosis. Salem M, Valverde S, Cabezas M, Pareto D, Oliver A, Salvi J, Rovira À, Lladó X. Neuroimage Clin; 2020; 25():102149. PubMed ID: 31918065 [Abstract] [Full Text] [Related]
2. A supervised framework with intensity subtraction and deformation field features for the detection of new T2-w lesions in multiple sclerosis. Salem M, Cabezas M, Valverde S, Pareto D, Oliver A, Salvi J, Rovira À, Lladó X. Neuroimage Clin; 2018; 17():607-615. PubMed ID: 29234597 [Abstract] [Full Text] [Related]
3. Are multi-contrast magnetic resonance images necessary for segmenting multiple sclerosis brains? A large cohort study based on deep learning. Narayana PA, Coronado I, Sujit SJ, Sun X, Wolinsky JS, Gabr RE. Magn Reson Imaging; 2020 Jan; 65():8-14. PubMed ID: 31670238 [Abstract] [Full Text] [Related]
7. Neuro-fuzzy patch-wise R-CNN for multiple sclerosis segmentation. Essa E, Aldesouky D, Hussein SE, Rashad MZ. Med Biol Eng Comput; 2020 Sep; 58(9):2161-2175. PubMed ID: 32681214 [Abstract] [Full Text] [Related]
16. Delve into Multiple Sclerosis (MS) lesion exploration: A modified attention U-Net for MS lesion segmentation in Brain MRI. Hashemi M, Akhbari M, Jutten C. Comput Biol Med; 2022 Jun; 145():105402. PubMed ID: 35344864 [Abstract] [Full Text] [Related]
17. Automatic detection of lesion load change in Multiple Sclerosis using convolutional neural networks with segmentation confidence. McKinley R, Wepfer R, Grunder L, Aschwanden F, Fischer T, Friedli C, Muri R, Rummel C, Verma R, Weisstanner C, Wiestler B, Berger C, Eichinger P, Muhlau M, Reyes M, Salmen A, Chan A, Wiest R, Wagner F. Neuroimage Clin; 2020 Jun; 25():102104. PubMed ID: 31927500 [Abstract] [Full Text] [Related]
18. Improved Detection of New MS Lesions during Follow-Up Using an Automated MR Coregistration-Fusion Method. Galletto Pregliasco A, Collin A, Guéguen A, Metten MA, Aboab J, Deschamps R, Gout O, Duron L, Sadik JC, Savatovsky J, Lecler A. AJNR Am J Neuroradiol; 2018 Jul; 39(7):1226-1232. PubMed ID: 29880479 [Abstract] [Full Text] [Related]