These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
201 related items for PubMed ID: 31926789
1. Enhanced osteogenic differentiation of osteoblasts on CaTiO3 nanotube film. Zhang Y, Wang K, Dong K, Cui N, Lu T, Han Y. Colloids Surf B Biointerfaces; 2020 Mar; 187():110773. PubMed ID: 31926789 [Abstract] [Full Text] [Related]
2. Surface modification of TiO2 nanotubes with osteogenic growth peptide to enhance osteoblast differentiation. Lai M, Jin Z, Su Z. Mater Sci Eng C Mater Biol Appl; 2017 Apr 01; 73():490-497. PubMed ID: 28183637 [Abstract] [Full Text] [Related]
3. Enhanced Osseointegration of Titanium Implants by Surface Modification with Silicon-doped Titania Nanotubes. Zhao X, You L, Wang T, Zhang X, Li Z, Ding L, Li J, Xiao C, Han F, Li B. Int J Nanomedicine; 2020 Apr 01; 15():8583-8594. PubMed ID: 33173295 [Abstract] [Full Text] [Related]
4. The effect of anatase TiO2 nanotube layers on MC3T3-E1 preosteoblast adhesion, proliferation, and differentiation. Yu WQ, Jiang XQ, Zhang FQ, Xu L. J Biomed Mater Res A; 2010 Sep 15; 94(4):1012-22. PubMed ID: 20694968 [Abstract] [Full Text] [Related]
5. Zn-Incorporated TiO2 Nanotube Surface Improves Osteogenesis Ability Through Influencing Immunomodulatory Function of Macrophages. Chen B, You Y, Ma A, Song Y, Jiao J, Song L, Shi E, Zhong X, Li Y, Li C. Int J Nanomedicine; 2020 Sep 15; 15():2095-2118. PubMed ID: 32273705 [Abstract] [Full Text] [Related]
6. Effects of micropitted/nanotubular titania topographies on bone mesenchymal stem cell osteogenic differentiation. Zhao L, Liu L, Wu Z, Zhang Y, Chu PK. Biomaterials; 2012 Mar 15; 33(9):2629-41. PubMed ID: 22204980 [Abstract] [Full Text] [Related]
7. Chitosan Coating of TiO2 Nanotube Arrays for Improved Metformin Release and Osteoblast Differentiation. Hashemi A, Ezati M, Mohammadnejad J, Houshmand B, Faghihi S. Int J Nanomedicine; 2020 Mar 15; 15():4471-4481. PubMed ID: 32606689 [Abstract] [Full Text] [Related]
8. The osteogenic activity of strontium loaded titania nanotube arrays on titanium substrates. Zhao L, Wang H, Huo K, Zhang X, Wang W, Zhang Y, Wu Z, Chu PK. Biomaterials; 2013 Jan 15; 34(1):19-29. PubMed ID: 23046755 [Abstract] [Full Text] [Related]
9. Characterization and preosteoblastic behavior of hydroxyapatite-deposited nanotube surface of titanium prepared by anodization coupled with alternative immersion method. Gu YX, Du J, Zhao JM, Si MS, Mo JJ, Lai HC. J Biomed Mater Res B Appl Biomater; 2012 Nov 15; 100(8):2122-30. PubMed ID: 22847998 [Abstract] [Full Text] [Related]
10. Effects of collagen modification on the osteogenic performance of different surface-modified titanium samples in vitro. Dong D, Huang Y, Lai Y, Yin G. Hua Xi Kou Qiang Yi Xue Za Zhi; 2024 Aug 01; 42(4):452-461. PubMed ID: 39049632 [Abstract] [Full Text] [Related]
11. Increased preosteoblast adhesion and osteogenic gene expression on TiO2 nanotubes modified with KRSR. Sun S, Yu W, Zhang Y, Zhang F. J Mater Sci Mater Med; 2013 Apr 01; 24(4):1079-91. PubMed ID: 23371766 [Abstract] [Full Text] [Related]
12. Guided proliferation and bone-forming functionality on highly ordered large diameter TiO2 nanotube arrays. Zhang R, Wu H, Ni J, Zhao C, Chen Y, Zheng C, Zhang X. Mater Sci Eng C Mater Biol Appl; 2015 Aug 01; 53():272-9. PubMed ID: 26042715 [Abstract] [Full Text] [Related]
13. Titania (TiO2) nanotube surfaces doped with zinc and strontium for improved cell compatibility. Bhattacharjee A, Pereira B, Soares P, Popat KC. Nanoscale; 2024 Jul 04; 16(26):12510-12522. PubMed ID: 38874593 [Abstract] [Full Text] [Related]
14. Osteogenic capability of strontium and icariin-loaded TiO2 nanotube coatings in vitro and in osteoporotic rats. Zhu Y, Zheng T, Wen LM, Li R, Zhang YB, Bi WJ, Feng XJ, Qi MC. J Biomater Appl; 2021 Apr 04; 35(9):1119-1131. PubMed ID: 33632004 [Abstract] [Full Text] [Related]
15. Synergistic effects of titania nanotubes and silicon to enhance the osteogenic activity. Wang T, Qian S, Zha GC, Zhao XJ, Ding L, Sun JY, Li B, Liu XY. Colloids Surf B Biointerfaces; 2018 Nov 01; 171():419-426. PubMed ID: 30075417 [Abstract] [Full Text] [Related]
16. Surface nanotopography-induced favorable modulation of bioactivity and osteoconductive potential of anodized 3D printed Ti-6Al-4V alloy mesh structure. Nune KC, Misra R, Gai X, Li SJ, Hao YL. J Biomater Appl; 2018 Mar 01; 32(8):1032-1048. PubMed ID: 29249195 [Abstract] [Full Text] [Related]
17. The roles of extracellular signal-regulated kinase 1/2 pathway in regulating osteogenic differentiation of murine preosteoblasts MC3T3-E1 cells on roughened titanium surfaces. Zhuang LF, Jiang HH, Qiao SC, Appert C, Si MS, Gu YX, Lai HC. J Biomed Mater Res A; 2012 Jan 01; 100(1):125-33. PubMed ID: 21997903 [Abstract] [Full Text] [Related]
18. In vitro behavior of MC3T3-E1 preosteoblast with different annealing temperature titania nanotubes. Yu WQ, Zhang YL, Jiang XQ, Zhang FQ. Oral Dis; 2010 Oct 01; 16(7):624-30. PubMed ID: 20604877 [Abstract] [Full Text] [Related]
19. Cell biological responses of osteoblasts on anodized nanotubular surface of a titanium-zirconium alloy. Sista S, Nouri A, Li Y, Wen C, Hodgson PD, Pande G. J Biomed Mater Res A; 2013 Dec 01; 101(12):3416-30. PubMed ID: 23559548 [Abstract] [Full Text] [Related]
20. Enhanced osteogenic activity of phosphorylated polyetheretherketone via surface-initiated grafting polymerization of vinylphosphonic acid. Zheng Y, Liu L, Xiao L, Zhang Q, Liu Y. Colloids Surf B Biointerfaces; 2019 Jan 01; 173():591-598. PubMed ID: 30352380 [Abstract] [Full Text] [Related] Page: [Next] [New Search]