These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Experimental and computational insights on the recognition mechanism between the estrogen receptor α with bisphenol compounds. Cao H, Wang F, Liang Y, Wang H, Zhang A, Song M. Arch Toxicol; 2017 Dec; 91(12):3897-3912. PubMed ID: 28616630 [Abstract] [Full Text] [Related]
6. In vitro study on the agonistic and antagonistic activities of bisphenol-S and other bisphenol-A congeners and derivatives via nuclear receptors. Molina-Molina JM, Amaya E, Grimaldi M, Sáenz JM, Real M, Fernández MF, Balaguer P, Olea N. Toxicol Appl Pharmacol; 2013 Oct 01; 272(1):127-36. PubMed ID: 23714657 [Abstract] [Full Text] [Related]
10. Determination of bisphenol A and bisphenol S concentrations and assessment of estrogen- and anti-androgen-like activities in thermal paper receipts from Brazil, France, and Spain. Molina-Molina JM, Jiménez-Díaz I, Fernández MF, Rodriguez-Carrillo A, Peinado FM, Mustieles V, Barouki R, Piccoli C, Olea N, Freire C. Environ Res; 2019 Mar 01; 170():406-415. PubMed ID: 30623888 [Abstract] [Full Text] [Related]
11. The molecular mechanism of bisphenol A (BPA) as an endocrine disruptor by interacting with nuclear receptors: insights from molecular dynamics (MD) simulations. Li L, Wang Q, Zhang Y, Niu Y, Yao X, Liu H. PLoS One; 2015 Mar 01; 10(3):e0120330. PubMed ID: 25799048 [Abstract] [Full Text] [Related]
13. A tiered high-throughput screening approach for evaluation of estrogen and androgen receptor modulation by environmentally relevant bisphenol A substitutes. Keminer O, Teigeler M, Kohler M, Wenzel A, Arning J, Kaßner F, Windshügel B, Eilebrecht E. Sci Total Environ; 2020 May 15; 717():134743. PubMed ID: 31836225 [Abstract] [Full Text] [Related]
15. Role of TET Dioxygenases and DNA Hydroxymethylation in Bisphenols-Stimulated Proliferation of Breast Cancer Cells. Li Z, Lyu C, Ren Y, Wang H. Environ Health Perspect; 2020 Feb 15; 128(2):27008. PubMed ID: 32105160 [Abstract] [Full Text] [Related]
16. In silico molecular interaction of bisphenol analogues with human nuclear receptors reveals their stronger affinity vs. classical bisphenol A. Sharma S, Ahmad S, Khan MF, Parvez S, Raisuddin S. Toxicol Mech Methods; 2018 Nov 15; 28(9):660-669. PubMed ID: 29925285 [Abstract] [Full Text] [Related]
17. In vitro and in vivo estrogenic activity of BPA, BPF and BPS in zebrafish-specific assays. Le Fol V, Aït-Aïssa S, Sonavane M, Porcher JM, Balaguer P, Cravedi JP, Zalko D, Brion F. Ecotoxicol Environ Saf; 2017 Aug 15; 142():150-156. PubMed ID: 28407500 [Abstract] [Full Text] [Related]
18. Acute Toxicity, Teratogenic, and Estrogenic Effects of Bisphenol A and Its Alternative Replacements Bisphenol S, Bisphenol F, and Bisphenol AF in Zebrafish Embryo-Larvae. Moreman J, Lee O, Trznadel M, David A, Kudoh T, Tyler CR. Environ Sci Technol; 2017 Nov 07; 51(21):12796-12805. PubMed ID: 29016128 [Abstract] [Full Text] [Related]
19. A survey of bisphenol A and other bisphenol analogues in foodstuffs from nine cities in China. Liao C, Kannan K. Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2014 Nov 07; 31(2):319-29. PubMed ID: 24262000 [Abstract] [Full Text] [Related]
20. Concentrations and profiles of bisphenol A and other bisphenol analogues in foodstuffs from the United States and their implications for human exposure. Liao C, Kannan K. J Agric Food Chem; 2013 May 15; 61(19):4655-62. PubMed ID: 23614805 [Abstract] [Full Text] [Related] Page: [Next] [New Search]