These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


422 related items for PubMed ID: 31941791

  • 1. Interaction between the yeast RAVE complex and Vph1-containing Vo sectors is a central glucose-sensitive interaction required for V-ATPase reassembly.
    Jaskolka MC, Kane PM.
    J Biol Chem; 2020 Feb 21; 295(8):2259-2269. PubMed ID: 31941791
    [Abstract] [Full Text] [Related]

  • 2. Molecular Interactions and Cellular Itinerary of the Yeast RAVE (Regulator of the H+-ATPase of Vacuolar and Endosomal Membranes) Complex.
    Smardon AM, Nasab ND, Tarsio M, Diakov TT, Kane PM.
    J Biol Chem; 2015 Nov 13; 290(46):27511-23. PubMed ID: 26405040
    [Abstract] [Full Text] [Related]

  • 3. Defining steps in RAVE-catalyzed V-ATPase assembly using purified RAVE and V-ATPase subcomplexes.
    Jaskolka MC, Tarsio M, Smardon AM, Khan MM, Kane PM.
    J Biol Chem; 2021 Nov 13; 296():100703. PubMed ID: 33895134
    [Abstract] [Full Text] [Related]

  • 4. RAVE and Rabconnectin-3 Complexes as Signal Dependent Regulators of Organelle Acidification.
    Jaskolka MC, Winkley SR, Kane PM.
    Front Cell Dev Biol; 2021 Nov 13; 9():698190. PubMed ID: 34249946
    [Abstract] [Full Text] [Related]

  • 5. Yeast phosphofructokinase-1 subunit Pfk2p is necessary for pH homeostasis and glucose-dependent vacuolar ATPase reassembly.
    Chan CY, Parra KJ.
    J Biol Chem; 2014 Jul 11; 289(28):19448-57. PubMed ID: 24860096
    [Abstract] [Full Text] [Related]

  • 6. The RAVE complex is an isoform-specific V-ATPase assembly factor in yeast.
    Smardon AM, Diab HI, Tarsio M, Diakov TT, Nasab ND, West RW, Kane PM.
    Mol Biol Cell; 2014 Feb 11; 25(3):356-67. PubMed ID: 24307682
    [Abstract] [Full Text] [Related]

  • 7. RAVE is essential for the efficient assembly of the C subunit with the vacuolar H(+)-ATPase.
    Smardon AM, Kane PM.
    J Biol Chem; 2007 Sep 07; 282(36):26185-94. PubMed ID: 17623654
    [Abstract] [Full Text] [Related]

  • 8. Coordinated conformational changes in the V1 complex during V-ATPase reversible dissociation.
    Vasanthakumar T, Keon KA, Bueler SA, Jaskolka MC, Rubinstein JL.
    Nat Struct Mol Biol; 2022 May 07; 29(5):430-439. PubMed ID: 35469063
    [Abstract] [Full Text] [Related]

  • 9. Interaction of the late endo-lysosomal lipid PI(3,5)P2 with the Vph1 isoform of yeast V-ATPase increases its activity and cellular stress tolerance.
    Banerjee S, Clapp K, Tarsio M, Kane PM.
    J Biol Chem; 2019 Jun 07; 294(23):9161-9171. PubMed ID: 31023825
    [Abstract] [Full Text] [Related]

  • 10. The RAVE complex is essential for stable assembly of the yeast V-ATPase.
    Smardon AM, Tarsio M, Kane PM.
    J Biol Chem; 2002 Apr 19; 277(16):13831-9. PubMed ID: 11844802
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. MgATP hydrolysis destabilizes the interaction between subunit H and yeast V1-ATPase, highlighting H's role in V-ATPase regulation by reversible disassembly.
    Sharma S, Oot RA, Wilkens S.
    J Biol Chem; 2018 Jul 06; 293(27):10718-10730. PubMed ID: 29754144
    [Abstract] [Full Text] [Related]

  • 13. Functional complementation reveals that 9 of the 13 human V-ATPase subunits can functionally substitute for their yeast orthologs.
    Abe M, Saito M, Tsukahara A, Shiokawa S, Ueno K, Shimamura H, Nagano M, Toshima JY, Toshima J.
    J Biol Chem; 2019 May 17; 294(20):8273-8285. PubMed ID: 30952699
    [Abstract] [Full Text] [Related]

  • 14. Tender love and disassembly: How a TLDc domain protein breaks the V-ATPase.
    Wilkens S, Khan MM, Knight K, Oot RA.
    Bioessays; 2023 Jul 17; 45(7):e2200251. PubMed ID: 37183929
    [Abstract] [Full Text] [Related]

  • 15. Functional reconstitution of vacuolar H+-ATPase from Vo proton channel and mutant V1-ATPase provides insight into the mechanism of reversible disassembly.
    Sharma S, Oot RA, Khan MM, Wilkens S.
    J Biol Chem; 2019 Apr 19; 294(16):6439-6449. PubMed ID: 30792311
    [Abstract] [Full Text] [Related]

  • 16. Consequences of loss of Vph1 protein-containing vacuolar ATPases (V-ATPases) for overall cellular pH homeostasis.
    Tarsio M, Zheng H, Smardon AM, Martínez-Muñoz GA, Kane PM.
    J Biol Chem; 2011 Aug 12; 286(32):28089-96. PubMed ID: 21669878
    [Abstract] [Full Text] [Related]

  • 17. Hph1 and Hph2 are novel components of the Sec63/Sec62 posttranslational translocation complex that aid in vacuolar proton ATPase biogenesis.
    Piña FJ, O'Donnell AF, Pagant S, Piao HL, Miller JP, Fields S, Miller EA, Cyert MS.
    Eukaryot Cell; 2011 Jan 12; 10(1):63-71. PubMed ID: 21097665
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Vacuolar and plasma membrane proton pumps collaborate to achieve cytosolic pH homeostasis in yeast.
    Martínez-Muñoz GA, Kane P.
    J Biol Chem; 2008 Jul 18; 283(29):20309-19. PubMed ID: 18502746
    [Abstract] [Full Text] [Related]

  • 20. The interdependent transport of yeast vacuole Ca2+ and H+ and the role of phosphatidylinositol 3,5-bisphosphate.
    Zhang C, Feng Y, Balutowski A, Miner GE, Rivera-Kohr DA, Hrabak MR, Sullivan KD, Guo A, Calderin JD, Fratti RA.
    J Biol Chem; 2022 Dec 18; 298(12):102672. PubMed ID: 36334632
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 22.