These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
176 related items for PubMed ID: 31951472
1. A model for human action potential dynamics in vivo. Gray RA, Franz MR. Am J Physiol Heart Circ Physiol; 2020 Mar 01; 318(3):H534-H546. PubMed ID: 31951472 [Abstract] [Full Text] [Related]
3. A model for human ventricular tissue. ten Tusscher KH, Noble D, Noble PJ, Panfilov AV. Am J Physiol Heart Circ Physiol; 2004 Apr 01; 286(4):H1573-89. PubMed ID: 14656705 [Abstract] [Full Text] [Related]
4. Action potential characterization in intact mouse heart: steady-state cycle length dependence and electrical restitution. Knollmann BC, Schober T, Petersen AO, Sirenko SG, Franz MR. Am J Physiol Heart Circ Physiol; 2007 Jan 01; 292(1):H614-21. PubMed ID: 16963611 [Abstract] [Full Text] [Related]
5. A human ventricular cell model for investigation of cardiac arrhythmias under hyperkalaemic conditions. Carro J, Rodríguez JF, Laguna P, Pueyo E. Philos Trans A Math Phys Eng Sci; 2011 Nov 13; 369(1954):4205-32. PubMed ID: 21969673 [Abstract] [Full Text] [Related]
7. ATX-II effects on the apparent location of M cells in a computational model of a human left ventricular wedge. Dos Santos RW, Otaviano Campos F, Neumann Ciuffo L, Nygren A, Giles W, Koch H. J Cardiovasc Electrophysiol; 2006 May 13; 17 Suppl 1():S86-S95. PubMed ID: 16686688 [Abstract] [Full Text] [Related]
8. Alternans and spiral breakup in a human ventricular tissue model. ten Tusscher KH, Panfilov AV. Am J Physiol Heart Circ Physiol; 2006 Sep 13; 291(3):H1088-100. PubMed ID: 16565318 [Abstract] [Full Text] [Related]
11. Short-term action potential memory and electrical restitution: A cellular computational study on the stability of cardiac repolarization under dynamic pacing. Zaniboni M. PLoS One; 2018 Sep 13; 13(3):e0193416. PubMed ID: 29494628 [Abstract] [Full Text] [Related]
12. Minimal model for human ventricular action potentials in tissue. Bueno-Orovio A, Cherry EM, Fenton FH. J Theor Biol; 2008 Aug 07; 253(3):544-60. PubMed ID: 18495166 [Abstract] [Full Text] [Related]
13. Relation between repolarization and refractoriness during programmed electrical stimulation in the human right ventricle. Implications for ventricular tachycardia induction. Koller BS, Karasik PE, Solomon AJ, Franz MR. Circulation; 1995 May 01; 91(9):2378-84. PubMed ID: 7729024 [Abstract] [Full Text] [Related]
14. Restricting excessive cardiac action potential and QT prolongation: a vital role for IKs in human ventricular muscle. Jost N, Virág L, Bitay M, Takács J, Lengyel C, Biliczki P, Nagy Z, Bogáts G, Lathrop DA, Papp JG, Varró A. Circulation; 2005 Sep 06; 112(10):1392-9. PubMed ID: 16129791 [Abstract] [Full Text] [Related]
15. Electrophysiological properties under heart failure conditions in a human ventricular cell: a modeling study. Elshrif MM, Pengcheng Shi, Cherry EM. Annu Int Conf IEEE Eng Med Biol Soc; 2014 Sep 06; 2014():4324-9. PubMed ID: 25570949 [Abstract] [Full Text] [Related]
16. Dynamical effects of diffusive cell coupling on cardiac excitation and propagation: a simulation study. Qu Z. Am J Physiol Heart Circ Physiol; 2004 Dec 06; 287(6):H2803-12. PubMed ID: 15271669 [Abstract] [Full Text] [Related]
18. Selective inhibition of physiological late Na+ current stabilizes ventricular repolarization. El-Bizri N, Li CH, Liu GX, Rajamani S, Belardinelli L. Am J Physiol Heart Circ Physiol; 2018 Feb 01; 314(2):H236-H245. PubMed ID: 28971840 [Abstract] [Full Text] [Related]