These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


355 related items for PubMed ID: 31961056

  • 1. Synthesis and characterization of thiol-acrylate hydrogels using a base-catalyzed Michael addition for 3D cell culture applications.
    Khan AH, Cook JK, Wortmann WJ, Kersker ND, Rao A, Pojman JA, Melvin AT.
    J Biomed Mater Res B Appl Biomater; 2020 Jul; 108(5):2294-2307. PubMed ID: 31961056
    [Abstract] [Full Text] [Related]

  • 2. Visible light cured thiol-vinyl hydrogels with tunable degradation for 3D cell culture.
    Hao Y, Shih H, Muňoz Z, Kemp A, Lin CC.
    Acta Biomater; 2014 Jan; 10(1):104-14. PubMed ID: 24021231
    [Abstract] [Full Text] [Related]

  • 3. A fast-degrading thiol-acrylate based hydrogel for cranial regeneration.
    Emmakah AM, Arman HE, Bragg JC, Greene T, Alvarez MB, Childress PJ, Goebel WS, Kacena MA, Lin CC, Chu TM.
    Biomed Mater; 2017 Mar 17; 12(2):025011. PubMed ID: 28177302
    [Abstract] [Full Text] [Related]

  • 4. PEG hydrogels formed by thiol-ene photo-click chemistry and their effect on the formation and recovery of insulin-secreting cell spheroids.
    Lin CC, Raza A, Shih H.
    Biomaterials; 2011 Dec 17; 32(36):9685-95. PubMed ID: 21924490
    [Abstract] [Full Text] [Related]

  • 5. Thiol-Methylsulfone-Based Hydrogels for 3D Cell Encapsulation.
    Paez JI, Farrukh A, Valbuena-Mendoza R, Włodarczyk-Biegun MK, Del Campo A.
    ACS Appl Mater Interfaces; 2020 Feb 19; 12(7):8062-8072. PubMed ID: 31999422
    [Abstract] [Full Text] [Related]

  • 6. Degradable thiol-acrylate hydrogels as tunable matrices for three-dimensional hepatic culture.
    Hao Y, Lin CC.
    J Biomed Mater Res A; 2014 Nov 19; 102(11):3813-27. PubMed ID: 24288169
    [Abstract] [Full Text] [Related]

  • 7. The relationship between thiol-acrylate photopolymerization kinetics and hydrogel mechanics: An improved model incorporating photobleaching and thiol-Michael addition.
    Zhu H, Yang X, Genin GM, Lu TJ, Xu F, Lin M.
    J Mech Behav Biomed Mater; 2018 Dec 19; 88():160-169. PubMed ID: 30173068
    [Abstract] [Full Text] [Related]

  • 8. Gelation Kinetics and Mechanical Properties of Thiol-Tetrazole Methylsulfone Hydrogels Designed for Cell Encapsulation.
    de Miguel-Jiménez A, Ebeling B, Paez JI, Fink-Straube C, Pearson S, Del Campo A.
    Macromol Biosci; 2023 Feb 19; 23(2):e2200419. PubMed ID: 36457236
    [Abstract] [Full Text] [Related]

  • 9. Control of thiol-maleimide reaction kinetics in PEG hydrogel networks.
    Jansen LE, Negrón-Piñeiro LJ, Galarza S, Peyton SR.
    Acta Biomater; 2018 Apr 01; 70():120-128. PubMed ID: 29452274
    [Abstract] [Full Text] [Related]

  • 10. In Situ "Clickable" Zwitterionic Starch-Based Hydrogel for 3D Cell Encapsulation.
    Dong D, Li J, Cui M, Wang J, Zhou Y, Luo L, Wei Y, Ye L, Sun H, Yao F.
    ACS Appl Mater Interfaces; 2016 Feb 01; 8(7):4442-55. PubMed ID: 26817499
    [Abstract] [Full Text] [Related]

  • 11. Rapidly in situ forming adhesive hydrogel based on a PEG-maleimide modified polypeptide through Michael addition.
    Zhou Y, Nie W, Zhao J, Yuan X.
    J Mater Sci Mater Med; 2013 Oct 01; 24(10):2277-86. PubMed ID: 23797826
    [Abstract] [Full Text] [Related]

  • 12. Photopolymerizable thiol-acrylate maleiated hyaluronic acid/thiol-terminated poly(ethylene glycol) hydrogels as potential in-situ formable scaffolds.
    Zhang C, Dong Q, Liang K, Zhou D, Yang H, Liu X, Xu W, Zhou Y, Xiao P.
    Int J Biol Macromol; 2018 Nov 01; 119():270-277. PubMed ID: 30055272
    [Abstract] [Full Text] [Related]

  • 13. Designing Visible Light-Cured Thiol-Acrylate Hydrogels for Studying the HIPPO Pathway Activation in Hepatocellular Carcinoma Cells.
    Lin TY, Bragg JC, Lin CC.
    Macromol Biosci; 2016 Apr 01; 16(4):496-507. PubMed ID: 26709469
    [Abstract] [Full Text] [Related]

  • 14. Factors That Influence Base-Catalyzed Thiol-Ene Hydrogel Synthesis.
    Morrison N, Vogel BM.
    Gels; 2023 Nov 20; 9(11):. PubMed ID: 37999007
    [Abstract] [Full Text] [Related]

  • 15. Fibrinogen-Based Hydrogel Modulus and Ligand Density Effects on Cell Morphogenesis in Two-Dimensional and Three-Dimensional Cell Cultures.
    Yosef A, Kossover O, Mironi-Harpaz I, Mauretti A, Melino S, Mizrahi J, Seliktar D.
    Adv Healthc Mater; 2019 Jul 20; 8(13):e1801436. PubMed ID: 31081289
    [Abstract] [Full Text] [Related]

  • 16. Synthesis and characterization of in situ chitosan-based hydrogel via grafting of carboxyethyl acrylate.
    Kim MS, Choi YJ, Noh I, Tae G.
    J Biomed Mater Res A; 2007 Dec 01; 83(3):674-82. PubMed ID: 17530630
    [Abstract] [Full Text] [Related]

  • 17. Design of synthetic extracellular matrices for probing breast cancer cell growth using robust cyctocompatible nucleophilic thiol-yne addition chemistry.
    Macdougall LJ, Wiley KL, Kloxin AM, Dove AP.
    Biomaterials; 2018 Sep 01; 178():435-447. PubMed ID: 29773227
    [Abstract] [Full Text] [Related]

  • 18. Rapidly in situ-forming degradable hydrogels from dextran thiols through Michael addition.
    Hiemstra C, Aa LJ, Zhong Z, Dijkstra PJ, Feijen J.
    Biomacromolecules; 2007 May 01; 8(5):1548-56. PubMed ID: 17425366
    [Abstract] [Full Text] [Related]

  • 19. Improving gelation efficiency and cytocompatibility of visible light polymerized thiol-norbornene hydrogels via addition of soluble tyrosine.
    Shih H, Liu HY, Lin CC.
    Biomater Sci; 2017 Feb 28; 5(3):589-599. PubMed ID: 28174779
    [Abstract] [Full Text] [Related]

  • 20. In situ forming poly(ethylene glycol)-based hydrogels via thiol-maleimide Michael-type addition.
    Fu Y, Kao WJ.
    J Biomed Mater Res A; 2011 Aug 28; 98(2):201-11. PubMed ID: 21548071
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 18.