These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
314 related items for PubMed ID: 31974667
1. Mapping quantitative trait loci (QTLs) and estimating the epistasis controlling stem rot resistance in cultivated peanut (Arachis hypogaea). Luo Z, Cui R, Chavarro C, Tseng YC, Zhou H, Peng Z, Chu Y, Yang X, Lopez Y, Tillman B, Dufault N, Brenneman T, Isleib TG, Holbrook C, Ozias-Akins P, Wang J. Theor Appl Genet; 2020 Apr; 133(4):1201-1212. PubMed ID: 31974667 [Abstract] [Full Text] [Related]
2. Genotyping-by-sequencing based genetic mapping reveals large number of epistatic interactions for stem rot resistance in groundnut. Dodia SM, Joshi B, Gangurde SS, Thirumalaisamy PP, Mishra GP, Narandrakumar D, Soni P, Rathnakumar AL, Dobaria JR, Sangh C, Chitikineni A, Chanda SV, Pandey MK, Varshney RK, Thankappan R. Theor Appl Genet; 2019 Apr; 132(4):1001-1016. PubMed ID: 30539317 [Abstract] [Full Text] [Related]
3. Consensus map integration and QTL meta-analysis narrowed a locus for yield traits to 0.7 cM and refined a region for late leaf spot resistance traits to 0.38 cM on linkage group A05 in peanut (Arachis hypogaea L.). Lu Q, Liu H, Hong Y, Li H, Liu H, Li X, Wen S, Zhou G, Li S, Chen X, Liang X. BMC Genomics; 2018 Dec 07; 19(1):887. PubMed ID: 30526476 [Abstract] [Full Text] [Related]
4. Chromosomes A07 and A05 associated with stable and major QTLs for pod weight and size in cultivated peanut (Arachis hypogaea L.). Luo H, Guo J, Ren X, Chen W, Huang L, Zhou X, Chen Y, Liu N, Xiong F, Lei Y, Liao B, Jiang H. Theor Appl Genet; 2018 Feb 07; 131(2):267-282. PubMed ID: 29058050 [Abstract] [Full Text] [Related]
5. Linkage Mapping and Genome-Wide Association Study Identified Two Peanut Late Leaf Spot Resistance Loci, PLLSR-1 and PLLSR-2, Using Nested Association Mapping. Gangurde SS, Thompson E, Yaduru S, Wang H, Fountain JC, Chu Y, Ozias-Akins P, Isleib TG, Holbrook C, Dutta B, Culbreath AK, Pandey MK, Guo B. Phytopathology; 2024 Jun 07; 114(6):1346-1355. PubMed ID: 38669464 [Abstract] [Full Text] [Related]
6. Discovery of two novel and adjacent QTLs on chromosome B02 controlling resistance against bacterial wilt in peanut variety Zhonghua 6. Luo H, Pandey MK, Zhi Y, Zhang H, Xu S, Guo J, Wu B, Chen H, Ren X, Zhou X, Chen Y, Chen W, Huang L, Liu N, Sudini HK, Varshney RK, Lei Y, Liao B, Jiang H. Theor Appl Genet; 2020 Apr 07; 133(4):1133-1148. PubMed ID: 31980836 [Abstract] [Full Text] [Related]
7. Genetic mapping and QTL analysis for peanut smut resistance. de Blas FJ, Bruno CI, Arias RS, Ballén-Taborda C, Mamani E, Oddino C, Rosso M, Costero BP, Bressano M, Soave JH, Soave SJ, Buteler MI, Seijo JG, Massa AN. BMC Plant Biol; 2021 Jul 02; 21(1):312. PubMed ID: 34215182 [Abstract] [Full Text] [Related]
8. High-density SNP map facilitates fine mapping of QTLs and candidate genes discovery for Aspergillus flavus resistance in peanut (Arachis hypogaea). Khan SA, Chen H, Deng Y, Chen Y, Zhang C, Cai T, Ali N, Mamadou G, Xie D, Guo B, Varshney RK, Zhuang W. Theor Appl Genet; 2020 Jul 02; 133(7):2239-2257. PubMed ID: 32285164 [Abstract] [Full Text] [Related]
9. Refining a major QTL controlling spotted wilt disease resistance in cultivated peanut (Arachis hypogaea L.) and evaluating its contribution to the resistance variations in peanut germplasm. Zhao Z, Tseng YC, Peng Z, Lopez Y, Chen CY, Tillman BL, Dang P, Wang J. BMC Genet; 2018 Mar 23; 19(1):17. PubMed ID: 29571286 [Abstract] [Full Text] [Related]
10. Main and epistatic QTL analyses for Sclerotinia Head Rot resistance in sunflower. Zubrzycki JE, Maringolo CA, Filippi CV, Quiróz FJ, Nishinakamasu V, Puebla AF, Di Rienzo JA, Escande A, Lia VV, Heinz RA, Hopp HE, Cervigni GDL, Paniego NB. PLoS One; 2017 Mar 23; 12(12):e0189859. PubMed ID: 29261806 [Abstract] [Full Text] [Related]
11. Quantitative trait locus analysis of agronomic and quality-related traits in cultivated peanut (Arachis hypogaea L.). Huang L, He H, Chen W, Ren X, Chen Y, Zhou X, Xia Y, Wang X, Jiang X, Liao B, Jiang H. Theor Appl Genet; 2015 Jun 23; 128(6):1103-15. PubMed ID: 25805315 [Abstract] [Full Text] [Related]
12. Identification of major QTLs underlying tomato spotted wilt virus resistance in peanut cultivar Florida-EP(TM) '113'. Tseng YC, Tillman BL, Peng Z, Wang J. BMC Genet; 2016 Sep 06; 17(1):128. PubMed ID: 27600750 [Abstract] [Full Text] [Related]
13. Co-localization of major quantitative trait loci for pod size and weight to a 3.7 cM interval on chromosome A05 in cultivated peanut (Arachis hypogaea L.). Luo H, Ren X, Li Z, Xu Z, Li X, Huang L, Zhou X, Chen Y, Chen W, Lei Y, Liao B, Pandey MK, Varshney RK, Guo B, Jiang X, Liu F, Jiang H. BMC Genomics; 2017 Jan 09; 18(1):58. PubMed ID: 28068921 [Abstract] [Full Text] [Related]
14. Development and deployment of a high-density linkage map identified quantitative trait loci for plant height in peanut (Arachis hypogaea L.). Huang L, Ren X, Wu B, Li X, Chen W, Zhou X, Chen Y, Pandey MK, Jiao Y, Luo H, Lei Y, Varshney RK, Liao B, Jiang H. Sci Rep; 2016 Dec 20; 6():39478. PubMed ID: 27995991 [Abstract] [Full Text] [Related]
15. A recombination bin-map identified a major QTL for resistance to Tomato Spotted Wilt Virus in peanut (Arachis hypogaea). Agarwal G, Clevenger J, Kale SM, Wang H, Pandey MK, Choudhary D, Yuan M, Wang X, Culbreath AK, Holbrook CC, Liu X, Varshney RK, Guo B. Sci Rep; 2019 Dec 03; 9(1):18246. PubMed ID: 31796847 [Abstract] [Full Text] [Related]
16. Identification of QTLs for resistance to leaf spots in cultivated peanut (Arachis hypogaea L.) through GWAS analysis. Zhang H, Chu Y, Dang P, Tang Y, Jiang T, Clevenger JP, Ozias-Akins P, Holbrook C, Wang ML, Campbell H, Hagan A, Chen C. Theor Appl Genet; 2020 Jul 03; 133(7):2051-2061. PubMed ID: 32144466 [Abstract] [Full Text] [Related]
17. Development of SSR markers and identification of major quantitative trait loci controlling shelling percentage in cultivated peanut (Arachis hypogaea L.). Luo H, Xu Z, Li Z, Li X, Lv J, Ren X, Huang L, Zhou X, Chen Y, Yu J, Chen W, Lei Y, Liao B, Jiang H. Theor Appl Genet; 2017 Aug 03; 130(8):1635-1648. PubMed ID: 28508097 [Abstract] [Full Text] [Related]
18. High-density genetic map using whole-genome resequencing for fine mapping and candidate gene discovery for disease resistance in peanut. Agarwal G, Clevenger J, Pandey MK, Wang H, Shasidhar Y, Chu Y, Fountain JC, Choudhary D, Culbreath AK, Liu X, Huang G, Wang X, Deshmukh R, Holbrook CC, Bertioli DJ, Ozias-Akins P, Jackson SA, Varshney RK, Guo B. Plant Biotechnol J; 2018 Nov 03; 16(11):1954-1967. PubMed ID: 29637729 [Abstract] [Full Text] [Related]
19. QTL mapping of web blotch resistance in peanut by high-throughput genome-wide sequencing. Liu H, Sun Z, Zhang X, Qin L, Qi F, Wang Z, Du P, Xu J, Zhang Z, Han S, Li S, Gao M, Zhang L, Cheng Y, Zheng Z, Huang B, Dong W. BMC Plant Biol; 2020 Jun 03; 20(1):249. PubMed ID: 32493219 [Abstract] [Full Text] [Related]
20. Mapping of a dominant rust resistance gene revealed two R genes around the major Rust_QTL in cultivated peanut (Arachis hypogaea L.). Mondal S, Badigannavar AM. Theor Appl Genet; 2018 Aug 03; 131(8):1671-1681. PubMed ID: 29744525 [Abstract] [Full Text] [Related] Page: [Next] [New Search]