These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
482 related items for PubMed ID: 31975001
1. A beneficial role of arbuscular mycorrhizal fungi in influencing the effects of silver nanoparticles on plant-microbe systems in a soil matrix. Cao J, Feng Y, Lin X, Wang J. Environ Sci Pollut Res Int; 2020 Apr; 27(11):11782-11796. PubMed ID: 31975001 [Abstract] [Full Text] [Related]
2. Phosphorus fertilization and mycorrhizal colonization change silver nanoparticle impacts on maize. Wang F, Li K, Shi Z. Ecotoxicology; 2021 Jan; 30(1):118-129. PubMed ID: 33141388 [Abstract] [Full Text] [Related]
3. [Biological Effects of ZnO Nanoparticles as Influenced by Arbuscular Mycorrhizal Inoculation and Phosphorus Fertilization]. Jing XX, Su ZZ, Xing HE, Wang FY, Shi ZY, Liu XQ. Huan Jing Ke Xue; 2016 Aug 08; 37(8):3208-3215. PubMed ID: 29964752 [Abstract] [Full Text] [Related]
4. Arbuscular mycorrhizae alleviate negative effects of zinc oxide nanoparticle and zinc accumulation in maize plants--A soil microcosm experiment. Wang F, Liu X, Shi Z, Tong R, Adams CA, Shi X. Chemosphere; 2016 Mar 08; 147():88-97. PubMed ID: 26761602 [Abstract] [Full Text] [Related]
5. Transcriptome analysis reveals comprehensive responses to cadmium stress in maize inoculated with arbuscular mycorrhizal fungi. Gu L, Zhao M, Ge M, Zhu S, Cheng B, Li X. Ecotoxicol Environ Saf; 2019 Dec 30; 186():109744. PubMed ID: 31627093 [Abstract] [Full Text] [Related]
6. Effects of Ag nanoparticles on plant growth, Ag bioaccumulation, and antioxidant enzyme activities in Phragmites australis as influenced by an arbuscular mycorrhizal fungus. Yang D, Wang L, Ma F, Wang G, You Y. Environ Sci Pollut Res Int; 2023 Jan 30; 30(2):4669-4679. PubMed ID: 35974267 [Abstract] [Full Text] [Related]
7. [Effects of maize straw returning on arbuscular mycorrhizal fungal community structure in soil]. Ma K, Song LL, Wang MG, Ma ZQ, An YY. Ying Yong Sheng Tai Xue Bao; 2019 Aug 30; 30(8):2746-2756. PubMed ID: 31418200 [Abstract] [Full Text] [Related]
8. Arbuscular mycorrhizal fungi alleviate arsenic toxicity to Medicago sativa by influencing arsenic speciation and partitioning. Li J, Sun Y, Jiang X, Chen B, Zhang X. Ecotoxicol Environ Saf; 2018 Aug 15; 157():235-243. PubMed ID: 29625397 [Abstract] [Full Text] [Related]
9. [Potential of Arbuscular Mycorrhizal Fungi, Biochar, and Combined Amendment on Sandy Soil Improvement Driven by Microbial Community]. Zhang ZC, Yang JY, Hao BH, Hao LJ, Luo JQ, Li X, Diao FW, Zhang JX, Guo W. Huan Jing Ke Xue; 2021 Apr 08; 42(4):2066-2079. PubMed ID: 33742842 [Abstract] [Full Text] [Related]
11. [Effects of Arbuscular Mycorrhizal Fungi on the Growth and Ce Uptake of Maize Grown in Ce-contaminated Soils]. Wang F, Guo W, Ma PK, Pan L, Zhang J. Huan Jing Ke Xue; 2016 Jan 15; 37(1):309-16. PubMed ID: 27078972 [Abstract] [Full Text] [Related]
12. [Effects of Arbuscular Mycorrhizal Fungi on the Growth and Uptake of La and Pb by Maize Grown in La and Pb-Contaminated Soil]. Chang Q, Guo W, Pan L, Wang QF, Zhou XN, Yang L, Li E. Huan Jing Ke Xue; 2017 Sep 08; 38(9):3915-3926. PubMed ID: 29965275 [Abstract] [Full Text] [Related]
13. Arbuscular mycorrhizal fungi alleviate Cd phytotoxicity by altering Cd subcellular distribution and chemical forms in Zea mays. Zhang XF, Hu ZH, Yan TX, Lu RR, Peng CL, Li SS, Jing YX. Ecotoxicol Environ Saf; 2019 Apr 30; 171():352-360. PubMed ID: 30616152 [Abstract] [Full Text] [Related]
14. Colonization and community structure of arbuscular mycorrhizal fungi in maize roots at different depths in the soil profile respond differently to phosphorus inputs on a long-term experimental site. Wang C, White PJ, Li C. Mycorrhiza; 2017 May 30; 27(4):369-381. PubMed ID: 28039601 [Abstract] [Full Text] [Related]
15. Arbuscular mycorrhizal fungal diversity, root colonization, and soil alkaline phosphatase activity in response to maize-wheat rotation and no-tillage in North China. Hu J, Yang A, Zhu A, Wang J, Dai J, Wong MH, Lin X. J Microbiol; 2015 Jul 30; 53(7):454-61. PubMed ID: 26115994 [Abstract] [Full Text] [Related]
16. Home-field advantage? evidence of local adaptation among plants, soil, and arbuscular mycorrhizal fungi through meta-analysis. Rúa MA, Antoninka A, Antunes PM, Chaudhary VB, Gehring C, Lamit LJ, Piculell BJ, Bever JD, Zabinski C, Meadow JF, Lajeunesse MJ, Milligan BG, Karst J, Hoeksema JD. BMC Evol Biol; 2016 Jun 10; 16(1):122. PubMed ID: 27287440 [Abstract] [Full Text] [Related]
17. Decreased ZnO nanoparticle phytotoxicity to maize by arbuscular mycorrhizal fungus and organic phosphorus. Wang F, Jing X, Adams CA, Shi Z, Sun Y. Environ Sci Pollut Res Int; 2018 Aug 10; 25(24):23736-23747. PubMed ID: 29876848 [Abstract] [Full Text] [Related]
18. [Arbuscular mycorrhizal symbiosis influences the biological effects of nano-ZnO on maize]. Wang WZ, Wang FY, Li S, Liu XQ. Huan Jing Ke Xue; 2014 Aug 10; 35(8):3135-41. PubMed ID: 25338390 [Abstract] [Full Text] [Related]
19. The role of metal nanoparticles in influencing arbuscular mycorrhizal fungi effects on plant growth. Feng Y, Cui X, He S, Dong G, Chen M, Wang J, Lin X. Environ Sci Technol; 2013 Aug 20; 47(16):9496-504. PubMed ID: 23869579 [Abstract] [Full Text] [Related]
20. Genotypic variation in the response of chickpea to arbuscular mycorrhizal fungi and non-mycorrhizal fungal endophytes. Bazghaleh N, Hamel C, Gan Y, Tar'an B, Knight JD. Can J Microbiol; 2018 Apr 20; 64(4):265-275. PubMed ID: 29390194 [Abstract] [Full Text] [Related] Page: [Next] [New Search]