These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


199 related items for PubMed ID: 31978717

  • 41.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 42. Mass spectrometric and enzymatic evidence confirm the existence of anthocyanidin 3,5-O-diglucosides in cabernet sauvignon (Vitis vinifera L.) grape berries.
    Xing RR, Li SY, He F, Yang Z, Duan CQ, Li Z, Wang J, Pan QH.
    J Agric Food Chem; 2015 Apr 01; 63(12):3251-60. PubMed ID: 25771698
    [Abstract] [Full Text] [Related]

  • 43. Water deficits accelerate ripening and induce changes in gene expression regulating flavonoid biosynthesis in grape berries.
    Castellarin SD, Matthews MA, Di Gaspero G, Gambetta GA.
    Planta; 2007 Dec 01; 227(1):101-12. PubMed ID: 17694320
    [Abstract] [Full Text] [Related]

  • 44. Changes of Anthocyanin Component Biosynthesis in 'Summer Black' Grape Berries after the Red Flesh Mutation Occurred.
    Zhang K, Liu Z, Guan L, Zheng T, Jiu S, Zhu X, Jia H, Fang J.
    J Agric Food Chem; 2018 Sep 05; 66(35):9209-9218. PubMed ID: 30092133
    [Abstract] [Full Text] [Related]

  • 45.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 46. Foliar-sprayed manganese sulfate improves flavonoid content in grape berry skin of Cabernet Sauvignon (Vitis vinifera L.) growing on alkaline soil and wine chromatic characteristics.
    Chen H, Yang J, Deng X, Lei Y, Xie S, Guo S, Ren R, Li J, Zhang Z, Xu T.
    Food Chem; 2020 Jun 01; 314():126182. PubMed ID: 31968293
    [Abstract] [Full Text] [Related]

  • 47. Grapevine varieties show different sensitivities to flavonoid alterations caused by high temperatures under two irrigation conditions.
    Pascual I, Martínez-Lüscher J, Irigoyen JJ, Goicoechea N, Carmen Antolín M.
    Food Res Int; 2024 Oct 01; 194():114899. PubMed ID: 39232526
    [Abstract] [Full Text] [Related]

  • 48. Influence of canopy-applied chitosan on the composition of organic cv. Sangiovese and Cabernet Sauvignon berries and wines.
    Tessarin P, Chinnici F, Donnini S, Liquori E, Riponi C, Rombolà AD.
    Food Chem; 2016 Nov 01; 210():512-9. PubMed ID: 27211677
    [Abstract] [Full Text] [Related]

  • 49.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 50. Combined Metabolome and Transcriptome Analysis Revealed the Accumulation of Anthocyanins in Grape Berry (Vitis vinifera L.) under High-Temperature Stress.
    Dou F, Phillip FO, Liu H.
    Plants (Basel); 2024 Aug 27; 13(17):. PubMed ID: 39273878
    [Abstract] [Full Text] [Related]

  • 51.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 52. Deficit irrigation promotes arbuscular colonization of fine roots by mycorrhizal fungi in grapevines (Vitis vinifera L.) in an arid climate.
    Schreiner RP, Tarara JM, Smithyman RP.
    Mycorrhiza; 2007 Oct 27; 17(7):551-562. PubMed ID: 17404761
    [Abstract] [Full Text] [Related]

  • 53. Phenolic composition and antioxidant capacity of pomaces from four grape varieties (Vitis vinifera L.).
    de la Cerda-Carrasco A, López-Solís R, Nuñez-Kalasic H, Peña-Neira Á, Obreque-Slier E.
    J Sci Food Agric; 2015 May 27; 95(7):1521-7. PubMed ID: 25082193
    [Abstract] [Full Text] [Related]

  • 54. Evaluation of the influence of white grape seed extracts as copigment sources on the anthocyanin extraction from grape skins previously classified by near infrared hyperspectral tools.
    Nogales-Bueno J, Baca-Bocanegra B, Jara-Palacios MJ, Hernández-Hierro JM, Heredia FJ.
    Food Chem; 2017 Apr 15; 221():1685-1690. PubMed ID: 27979147
    [Abstract] [Full Text] [Related]

  • 55. Assessment of the color modulation and stability of naturally copigmented anthocyanin-grape colorants with different levels of purification.
    Gordillo B, Sigurdson GT, Lao F, González-Miret ML, Heredia FJ, Giusti MM.
    Food Res Int; 2018 Apr 15; 106():791-799. PubMed ID: 29579988
    [Abstract] [Full Text] [Related]

  • 56. Influence of the physiological stage and the content of soluble solids on the anthocyanin extractability of Vitis vinifera L. cv. Tempranillo grapes.
    Hernández-Hierro JM, Quijada-Morín N, Rivas-Gonzalo JC, Escribano-Bailón MT.
    Anal Chim Acta; 2012 Jun 30; 732():26-32. PubMed ID: 22688031
    [Abstract] [Full Text] [Related]

  • 57. Anthocyanin yield and skin softening during maceration, as affected by vineyard row orientation and grape ripeness of Vitis vinifera L. cv. Shiraz.
    Giacosa S, Marengo F, Guidoni S, Rolle L, Hunter JJ.
    Food Chem; 2015 May 01; 174():8-15. PubMed ID: 25529645
    [Abstract] [Full Text] [Related]

  • 58.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 59.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 60. Phenolic compounds extraction in enzymatic macerations of grape skins identified as low-level extractable total anthocyanin content.
    Nogales-Bueno J, Baca-Bocanegra B, Heredia FJ, Hernández-Hierro JM.
    J Food Sci; 2020 Feb 01; 85(2):324-331. PubMed ID: 31968392
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 10.