These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
179 related items for PubMed ID: 31979278
1. Improvement of Saccharification and Delignification Efficiency of Trichoderma reesei Rut-C30 by Genetic Bioengineering. Gopalakrishnan RM, Manavalan T, Ramesh J, Thangavelu KP, Heese K. Microorganisms; 2020 Jan 23; 8(2):. PubMed ID: 31979278 [Abstract] [Full Text] [Related]
2. A β-glucosidase hyper-production Trichoderma reesei mutant reveals a potential role of cel3D in cellulase production. Li C, Lin F, Li Y, Wei W, Wang H, Qin L, Zhou Z, Li B, Wu F, Chen Z. Microb Cell Fact; 2016 Sep 01; 15(1):151. PubMed ID: 27585813 [Abstract] [Full Text] [Related]
5. Enhanced cellulase production in Trichoderma reesei RUT C30 via constitution of minimal transcriptional activators. Zhang J, Zhang G, Wang W, Wang W, Wei D. Microb Cell Fact; 2018 May 17; 17(1):75. PubMed ID: 29773074 [Abstract] [Full Text] [Related]
8. Improvement of cellulase production in Trichoderma reesei Rut-C30 by overexpression of a novel regulatory gene Trvib-1. Zhang F, Zhao X, Bai F. Bioresour Technol; 2018 Jan 17; 247():676-683. PubMed ID: 30060399 [Abstract] [Full Text] [Related]
9. Characterization and Strain Improvement of a Hypercellulytic Variant, Trichoderma reesei SN1, by Genetic Engineering for Optimized Cellulase Production in Biomass Conversion Improvement. Qian Y, Zhong L, Hou Y, Qu Y, Zhong Y. Front Microbiol; 2016 Jan 17; 7():1349. PubMed ID: 27621727 [Abstract] [Full Text] [Related]
10. Comparative Secretomics Analysis Reveals the Major Components of Penicillium oxalicum 16 and Trichoderma reesei RUT-C30. Wang K, Zhang N, Pearce R, Yi S, Zhao X. Microorganisms; 2021 Sep 27; 9(10):. PubMed ID: 34683363 [Abstract] [Full Text] [Related]
11. Glucose-lactose mixture feeds in industry-like conditions: a gene regulatory network analysis on the hyperproducing Trichoderma reesei strain Rut-C30. Pirayre A, Duval L, Blugeon C, Firmo C, Perrin S, Jourdier E, Margeot A, Bidard F. BMC Genomics; 2020 Dec 10; 21(1):885. PubMed ID: 33302864 [Abstract] [Full Text] [Related]
13. A novel GH10 xylanase from Penicillium sp. accelerates saccharification of alkaline-pretreated bagasse by an enzyme from recombinant Trichoderma reesei expressing Aspergillus β-glucosidase. Shibata N, Suetsugu M, Kakeshita H, Igarashi K, Hagihara H, Takimura Y. Biotechnol Biofuels; 2017 Dec 10; 10():278. PubMed ID: 29201142 [Abstract] [Full Text] [Related]
14. Effect of the res2 transcription factor gene deletion on protein secretion and stress response in the hyperproducer strain Trichoderma reesei Rut-C30. Alharake J, Bidard F, Aouam T, Sénamaud-Beaufort C, Margeot A, Heiss-Blanquet S. BMC Microbiol; 2023 Nov 30; 23(1):374. PubMed ID: 38036984 [Abstract] [Full Text] [Related]
15. Engineering Trichoderma reesei Rut-C30 with the overexpression of egl1 at the ace1 locus to relieve repression on cellulase production and to adjust the ratio of cellulolytic enzymes for more efficient hydrolysis of lignocellulosic biomass. Meng QS, Liu CG, Zhao XQ, Bai FW. J Biotechnol; 2018 Nov 10; 285():56-63. PubMed ID: 30194052 [Abstract] [Full Text] [Related]
16. Penicillium janthinellum NCIM1366 shows improved biomass hydrolysis and a larger number of CAZymes with higher induction levels over Trichoderma reesei RUT-C30. Sreeja-Raju A, Christopher M, Kooloth-Valappil P, Kuni-Parambil R, Gokhale DV, Sankar M, Abraham A, Pandey A, Sukumaran RK. Biotechnol Biofuels; 2020 Dec 01; 13(1):196. PubMed ID: 33292411 [Abstract] [Full Text] [Related]
17. [Artificial zinc finger protein mediated cellulase production in Trichoderma reesei Rut-C30]. Meng Q, Li J, Zhang F, Zhao X, Bai F. Sheng Wu Gong Cheng Xue Bao; 2019 Jan 25; 35(1):81-90. PubMed ID: 30756537 [Abstract] [Full Text] [Related]