These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
89 related items for PubMed ID: 319795
1. Solubilization of a functionally active proline carrier from membranes of Escherichia coli with an organic solvent. Amanuma H, Motojima K, Yamaguchi A, Anraku Y. Biochem Biophys Res Commun; 1977 Jan 24; 74(2):366-73. PubMed ID: 319795 [No Abstract] [Full Text] [Related]
2. Membrane potential and active transport in membrane vesicles from Escherichia coli. Schuldiner S, Kaback HR. Biochemistry; 1975 Dec 16; 14(25):5451-61. PubMed ID: 172125 [No Abstract] [Full Text] [Related]
3. Evaluation of the chemiosmotic interpretation of active transport in bacterial membrane vesicles. Lombardi FJ, Reeves JP, Short SA, Kaback HR. Ann N Y Acad Sci; 1974 Feb 18; 227():312-27. PubMed ID: 4363926 [No Abstract] [Full Text] [Related]
4. Effect of lithium on proline transport by whole cells of Escherichia coli. Kawasaki T, Kayama Y. Biochem Biophys Res Commun; 1973 Nov 01; 55(1):52-9. PubMed ID: 4132547 [No Abstract] [Full Text] [Related]
5. Energy coupling in membrane vesicles of Escherichia coli. I. Accumulation of metabolites in response to an electrical potential. Hirata H, Altendorf K, Harold FM. J Biol Chem; 1974 May 10; 249(9):2939-45. PubMed ID: 4133356 [No Abstract] [Full Text] [Related]
6. Transport of sugars and amino acids in bacteria. XI. Mechanism of energy coupling reaction for the concentrative uptake of proline by Escherichia coli membrane vesicles. Kasahara M, Anraku Y. J Biochem; 1974 Nov 10; 76(5):977-83. PubMed ID: 4616034 [No Abstract] [Full Text] [Related]
7. Active transport of L-proline by membrane vesicles isolated from rat brain. Kanner BI, Sharon I. Biochim Biophys Acta; 1980 Jul 16; 600(1):185-94. PubMed ID: 7397167 [No Abstract] [Full Text] [Related]
8. Solubilization and reconstitution of proline carrier in Escherichia coli; quantitative analysis and optimal conditions. Hanada K, Yamato I, Anraku Y. Biochim Biophys Acta; 1988 Apr 07; 939(2):282-8. PubMed ID: 3281711 [Abstract] [Full Text] [Related]
12. The use of K+ diffusion gradients to support transport by Escherichia coli membrane vesicles. Hirata H. Methods Enzymol; 1979 Aug 21; 55():676-80. PubMed ID: 379504 [No Abstract] [Full Text] [Related]
13. Effect of the proton electrochemical gradient on maleimide inactivation of active transport in Escherichia coli membrane vesicles. Cohn DE, Kaczorowski GJ, Kaback HR. Biochemistry; 1981 May 26; 20(11):3308-13. PubMed ID: 7018574 [Abstract] [Full Text] [Related]
16. Transport of sugars and amino acids in bacteria. X. Sources of energy and energy coupling reactions of the active transport systems for isoleucine and proline in E. coli. Kobayashi H, Kin E, Anraku Y. J Biochem; 1974 Aug 26; 76(2):251-61. PubMed ID: 4154322 [No Abstract] [Full Text] [Related]
18. Cotransport of proline and Li+ in Escherichia coli. Tsuchiya T, Yamane Y, Shiota S, Kawasaki T. FEBS Lett; 1984 Mar 26; 168(2):327-30. PubMed ID: 6327369 [Abstract] [Full Text] [Related]
19. Solubilization and reconstitution of membrane proteins of Escherichia coli using alkanoyl-N-methylglucamides. Hanatani M, Nishifuji K, Futai M, Tsuchiya T. J Biochem; 1984 May 26; 95(5):1349-53. PubMed ID: 6235214 [Abstract] [Full Text] [Related]
20. Functional symmetry of the beta-galactoside carrier in Escherichia coli. Teather RM, Hamelin O, Schwarz H, Overath P. Biochim Biophys Acta; 1977 Jun 16; 467(3):386-95. PubMed ID: 328041 [Abstract] [Full Text] [Related] Page: [Next] [New Search]