These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
715 related items for PubMed ID: 31982592
1. Enhanced chondrogenic phenotype of primary bovine articular chondrocytes in Fibrin-Hyaluronan hydrogel by multi-axial mechanical loading and FGF18. Antunes BP, Vainieri ML, Alini M, Monsonego-Ornan E, Grad S, Yayon A. Acta Biomater; 2020 Mar 15; 105():170-179. PubMed ID: 31982592 [Abstract] [Full Text] [Related]
2. Mechanically stimulated osteochondral organ culture for evaluation of biomaterials in cartilage repair studies. Vainieri ML, Wahl D, Alini M, van Osch GJVM, Grad S. Acta Biomater; 2018 Nov 15; 81():256-266. PubMed ID: 30273741 [Abstract] [Full Text] [Related]
3. [Chondrogenesis of passaged chondrocytes induced by different dynamic loads in bioreactor]. Wang N, Chen J, Zhang G, Chai W. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2013 Jul 15; 27(7):786-92. PubMed ID: 24063164 [Abstract] [Full Text] [Related]
4. Evaluation of the influence of platelet-rich plasma (PRP), platelet lysate (PL) and mechanical loading on chondrogenesis in vitro. Pötter N, Westbrock F, Grad S, Alini M, Stoddart MJ, Schmal H, Kubosch D, Salzmann G, Kubosch EJ. Sci Rep; 2021 Oct 12; 11(1):20188. PubMed ID: 34642434 [Abstract] [Full Text] [Related]
5. Hyaluronic acid facilitates chondrogenesis and matrix deposition of human adipose derived mesenchymal stem cells and human chondrocytes co-cultures. Amann E, Wolff P, Breel E, van Griensven M, Balmayor ER. Acta Biomater; 2017 Apr 01; 52():130-144. PubMed ID: 28131943 [Abstract] [Full Text] [Related]
6. Dynamic Compressive Loading Improves Cartilage Repair in an In Vitro Model of Microfracture: Comparison of 2 Mechanical Loading Regimens on Simulated Microfracture Based on Fibrin Gel Scaffolds Encapsulating Connective Tissue Progenitor Cells. Iseki T, Rothrauff BB, Kihara S, Sasaki H, Yoshiya S, Fu FH, Tuan RS, Gottardi R. Am J Sports Med; 2019 Jul 01; 47(9):2188-2199. PubMed ID: 31307219 [Abstract] [Full Text] [Related]
7. Comparison of chondro-inductivity between collagen and hyaluronic acid hydrogel based on chemical/physical microenvironment. Yang J, Tang Z, Liu Y, Luo Z, Xiao Y, Zhang X. Int J Biol Macromol; 2021 Jul 01; 182():1941-1952. PubMed ID: 34062160 [Abstract] [Full Text] [Related]
8. Intact vitreous humor as a potential extracellular matrix hydrogel for cartilage tissue engineering applications. Lindberg GCJ, Longoni A, Lim KS, Rosenberg AJ, Hooper GJ, Gawlitta D, Woodfield TBF. Acta Biomater; 2019 Feb 01; 85():117-130. PubMed ID: 30572166 [Abstract] [Full Text] [Related]
9. Influence of extremely low frequency, low energy electromagnetic fields and combined mechanical stimulation on chondrocytes in 3-D constructs for cartilage tissue engineering. Hilz FM, Ahrens P, Grad S, Stoddart MJ, Dahmani C, Wilken FL, Sauerschnig M, Niemeyer P, Zwingmann J, Burgkart R, von Eisenhart-Rothe R, Südkamp NP, Weyh T, Imhoff AB, Alini M, Salzmann GM. Bioelectromagnetics; 2014 Feb 01; 35(2):116-28. PubMed ID: 24203577 [Abstract] [Full Text] [Related]
10. Fibroblast growth factor (FGF) 18 signals through FGF receptor 3 to promote chondrogenesis. Davidson D, Blanc A, Filion D, Wang H, Plut P, Pfeffer G, Buschmann MD, Henderson JE. J Biol Chem; 2005 May 27; 280(21):20509-15. PubMed ID: 15781473 [Abstract] [Full Text] [Related]
11. Comparative potential of juvenile and adult human articular chondrocytes for cartilage tissue formation in three-dimensional biomimetic hydrogels. Smeriglio P, Lai JH, Dhulipala L, Behn AW, Goodman SB, Smith RL, Maloney WJ, Yang F, Bhutani N. Tissue Eng Part A; 2015 Jan 27; 21(1-2):147-55. PubMed ID: 25054343 [Abstract] [Full Text] [Related]
12. The bio in the ink: cartilage regeneration with bioprintable hydrogels and articular cartilage-derived progenitor cells. Levato R, Webb WR, Otto IA, Mensinga A, Zhang Y, van Rijen M, van Weeren R, Khan IM, Malda J. Acta Biomater; 2017 Oct 01; 61():41-53. PubMed ID: 28782725 [Abstract] [Full Text] [Related]
13. Chondrogenic differentiation of human bone marrow-derived mesenchymal stem cells in a simulated osteochondral environment is hydrogel dependent. de Vries-van Melle ML, Tihaya MS, Kops N, Koevoet WJ, Murphy JM, Verhaar JA, Alini M, Eglin D, van Osch GJ. Eur Cell Mater; 2014 Feb 03; 27():112-23; discussion 123. PubMed ID: 24488855 [Abstract] [Full Text] [Related]
14. Biomimetic scaffolds and dynamic compression enhance the properties of chondrocyte- and MSC-based tissue-engineered cartilage. Sawatjui N, Limpaiboon T, Schrobback K, Klein T. J Tissue Eng Regen Med; 2018 May 03; 12(5):1220-1229. PubMed ID: 29489056 [Abstract] [Full Text] [Related]
15. Double - network hydrogel based on exopolysaccharides as a biomimetic extracellular matrix to augment articular cartilage regeneration. Cai Z, Tang Y, Wei Y, Wang P, Zhang H. Acta Biomater; 2022 Oct 15; 152():124-143. PubMed ID: 36055611 [Abstract] [Full Text] [Related]
16. Morphology and function of ovine articular cartilage chondrocytes in 3-d hydrogel culture. Schagemann JC, Mrosek EH, Landers R, Kurz H, Erggelet C. Cells Tissues Organs; 2006 Oct 15; 182(2):89-97. PubMed ID: 16804299 [Abstract] [Full Text] [Related]
17. Cartilage tissue engineering by co-transplantation of chondrocyte extracellular vesicles and mesenchymal stem cells, entrapped in chitosan-hyaluronic acid hydrogel. Heirani-Tabasi A, Hosseinzadeh S, Rabbani S, Ahmadi Tafti SH, Jamshidi K, Soufizomorrod M, Soleimani M. Biomed Mater; 2021 Jul 13; 16(5):. PubMed ID: 34144542 [Abstract] [Full Text] [Related]
18. Expansion of human articular chondrocytes and formation of tissue-engineered cartilage: a step towards exploring a potential use of matrix-induced cell therapy. Munirah S, Samsudin OC, Aminuddin BS, Ruszymah BH. Tissue Cell; 2010 Oct 13; 42(5):282-92. PubMed ID: 20810142 [Abstract] [Full Text] [Related]