These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


1283 related items for PubMed ID: 31983282

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. TNF-induced necroptosis initiates early autophagy events via RIPK3-dependent AMPK activation, but inhibits late autophagy.
    Wu W, Wang X, Sun Y, Berleth N, Deitersen J, Schlütermann D, Stuhldreier F, Wallot-Hieke N, José Mendiburo M, Cox J, Peter C, Bergmann AK, Stork B.
    Autophagy; 2021 Dec; 17(12):3992-4009. PubMed ID: 33779513
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. STYK1 promotes autophagy through enhancing the assembly of autophagy-specific class III phosphatidylinositol 3-kinase complex I.
    Zhou C, Qian X, Hu M, Zhang R, Liu N, Huang Y, Yang J, Zhang J, Bai H, Yang Y, Wang Y, Ali D, Michalak M, Chen XZ, Tang J.
    Autophagy; 2020 Oct; 16(10):1786-1806. PubMed ID: 31696776
    [Abstract] [Full Text] [Related]

  • 6. AMPK activation does not enhance autophagy in neurons in contrast to MTORC1 inhibition: different impact on β-amyloid clearance.
    Benito-Cuesta I, Ordóñez-Gutiérrez L, Wandosell F.
    Autophagy; 2021 Mar; 17(3):656-671. PubMed ID: 32075509
    [Abstract] [Full Text] [Related]

  • 7. AMPK-dependent phosphorylation is required for transcriptional activation of TFEB and TFE3.
    Paquette M, El-Houjeiri L, C Zirden L, Puustinen P, Blanchette P, Jeong H, Dejgaard K, Siegel PM, Pause A.
    Autophagy; 2021 Dec; 17(12):3957-3975. PubMed ID: 33734022
    [Abstract] [Full Text] [Related]

  • 8. How autophagy controls the intestinal epithelial barrier.
    Foerster EG, Mukherjee T, Cabral-Fernandes L, Rocha JDB, Girardin SE, Philpott DJ.
    Autophagy; 2022 Jan; 18(1):86-103. PubMed ID: 33906557
    [Abstract] [Full Text] [Related]

  • 9. Platelet autophagic machinery involved in thrombosis through a novel linkage of AMPK-MTOR to sphingolipid metabolism.
    Lee TY, Lu WJ, Changou CA, Hsiung YC, Trang NTT, Lee CY, Chang TH, Jayakumar T, Hsieh CY, Yang CH, Chang CC, Chen RJ, Sheu JR, Lin KH.
    Autophagy; 2021 Dec; 17(12):4141-4158. PubMed ID: 33749503
    [Abstract] [Full Text] [Related]

  • 10. ATM-mediated PTEN phosphorylation promotes PTEN nuclear translocation and autophagy in response to DNA-damaging agents in cancer cells.
    Chen JH, Zhang P, Chen WD, Li DD, Wu XQ, Deng R, Jiao L, Li X, Ji J, Feng GK, Zeng YX, Jiang JW, Zhu XF.
    Autophagy; 2015 Dec; 11(2):239-52. PubMed ID: 25701194
    [Abstract] [Full Text] [Related]

  • 11. MITF-MIR211 axis is a novel autophagy amplifier system during cellular stress.
    Ozturk DG, Kocak M, Akcay A, Kinoglu K, Kara E, Buyuk Y, Kazan H, Gozuacik D.
    Autophagy; 2019 Mar; 15(3):375-390. PubMed ID: 30290719
    [Abstract] [Full Text] [Related]

  • 12. ARG2 impairs endothelial autophagy through regulation of MTOR and PRKAA/AMPK signaling in advanced atherosclerosis.
    Xiong Y, Yepuri G, Forbiteh M, Yu Y, Montani JP, Yang Z, Ming XF.
    Autophagy; 2014 Mar; 10(12):2223-38. PubMed ID: 25484082
    [Abstract] [Full Text] [Related]

  • 13. ATM loss disrupts the autophagy-lysosomal pathway.
    Cheng A, Tse KH, Chow HM, Gan Y, Song X, Ma F, Qian YXY, She W, Herrup K.
    Autophagy; 2021 Aug; 17(8):1998-2010. PubMed ID: 32757690
    [Abstract] [Full Text] [Related]

  • 14. Mitochondrial respiratory chain deficiency inhibits lysosomal hydrolysis.
    Fernandez-Mosquera L, Yambire KF, Couto R, Pereyra L, Pabis K, Ponsford AH, Diogo CV, Stagi M, Milosevic I, Raimundo N.
    Autophagy; 2019 Sep; 15(9):1572-1591. PubMed ID: 30917721
    [Abstract] [Full Text] [Related]

  • 15. The ménage à trois of autophagy, lipid droplets and liver disease.
    Filali-Mouncef Y, Hunter C, Roccio F, Zagkou S, Dupont N, Primard C, Proikas-Cezanne T, Reggiori F.
    Autophagy; 2022 Jan; 18(1):50-72. PubMed ID: 33794741
    [Abstract] [Full Text] [Related]

  • 16. Crocetin promotes clearance of amyloid-β by inducing autophagy via the STK11/LKB1-mediated AMPK pathway.
    Wani A, Al Rihani SB, Sharma A, Weadick B, Govindarajan R, Khan SU, Sharma PR, Dogra A, Nandi U, Reddy CN, Bharate SS, Singh G, Bharate SB, Vishwakarma RA, Kaddoumi A, Kumar A.
    Autophagy; 2021 Nov; 17(11):3813-3832. PubMed ID: 33404280
    [Abstract] [Full Text] [Related]

  • 17. TP53INP2 contributes to autophagosome formation by promoting LC3-ATG7 interaction.
    You Z, Xu Y, Wan W, Zhou L, Li J, Zhou T, Shi Y, Liu W.
    Autophagy; 2019 Aug; 15(8):1309-1321. PubMed ID: 30767704
    [Abstract] [Full Text] [Related]

  • 18. GABARAPs and LC3s have opposite roles in regulating ULK1 for autophagy induction.
    Grunwald DS, Otto NM, Park JM, Song D, Kim DH.
    Autophagy; 2020 Apr; 16(4):600-614. PubMed ID: 31208283
    [Abstract] [Full Text] [Related]

  • 19. A chemical genomics-aggrephagy integrated method studying functional analysis of autophagy inducers.
    Kataura T, Tashiro E, Nishikawa S, Shibahara K, Muraoka Y, Miura M, Sakai S, Katoh N, Totsuka M, Onodera M, Shin-Ya K, Miyamoto K, Sasazawa Y, Hattori N, Saiki S, Imoto M.
    Autophagy; 2021 Aug; 17(8):1856-1872. PubMed ID: 32762399
    [Abstract] [Full Text] [Related]

  • 20. Copper metabolism in cell death and autophagy.
    Xue Q, Kang R, Klionsky DJ, Tang D, Liu J, Chen X.
    Autophagy; 2023 Aug; 19(8):2175-2195. PubMed ID: 37055935
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 65.