These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
222 related items for PubMed ID: 31991266
1. Valorization of waste NiMH battery through recovery of critical rare earth metal: A simple recycling process for the circular economy. Ahn NK, Shim HW, Kim DW, Swain B. Waste Manag; 2020 Mar 01; 104():254-261. PubMed ID: 31991266 [Abstract] [Full Text] [Related]
2. Process optimization and kinetics for leaching of rare earth metals from the spent Ni-metal hydride batteries. Meshram P, Pandey BD, Mankhand TR. Waste Manag; 2016 May 01; 51():196-203. PubMed ID: 26746588 [Abstract] [Full Text] [Related]
4. Characterization of spent nickel-metal hydride batteries and a preliminary economic evaluation of the recovery processes. Lin SL, Huang KL, Wang IC, Chou IC, Kuo YM, Hung CH, Lin C. J Air Waste Manag Assoc; 2016 Mar 01; 66(3):296-306. PubMed ID: 26651506 [Abstract] [Full Text] [Related]
6. Hydrometallurgical recovery of metals: Ce, La, Co, Fe, Mn, Ni and Zn from the stream of used Ni-MH cells. Sobianowska-Turek A. Waste Manag; 2018 Jul 01; 77():213-219. PubMed ID: 29655922 [Abstract] [Full Text] [Related]
8. Optimization of metals and rare earth elements leaching from spent Ni-MH batteries by response surface methodology. Otron AMA, Millogo TJF, Tran LH, Blais JF. Environ Technol; 2024 Aug 01; 45(20):4156-4168. PubMed ID: 37524656 [Abstract] [Full Text] [Related]
9. Recovery of manganese and zinc from waste Zn-C cell powder: Mutual separation of Mn(II) and Zn(II) from leach liquor by solvent extraction technique. Biswas RK, Habib MA, Karmakar AK, Tanzin S. Waste Manag; 2016 May 01; 51():149-156. PubMed ID: 26456667 [Abstract] [Full Text] [Related]
11. Hydrometallurgical process for the recovery of metal values from spent lithium-ion batteries in citric acid media. Chen X, Zhou T. Waste Manag Res; 2014 Nov 01; 32(11):1083-93. PubMed ID: 25378255 [Abstract] [Full Text] [Related]
12. Leaching of rare earth elements and base metals from spent NiMH batteries using gluconate and its potential bio-oxidation products. Rasoulnia P, Barthen R, Puhakka JA, Lakaniemi AM. J Hazard Mater; 2021 Jul 15; 414():125564. PubMed ID: 33684819 [Abstract] [Full Text] [Related]
16. Study of the factors influencing the metals solubilisation from a mixture of waste batteries by response surface methodology. Tanong K, Coudert L, Chartier M, Mercier G, Blais JF. Environ Technol; 2017 Dec 15; 38(24):3167-3179. PubMed ID: 28162038 [Abstract] [Full Text] [Related]
17. Selective extraction and recovery of rare earth metals from phosphor powders in waste fluorescent lamps using an ionic liquid system. Yang F, Kubota F, Baba Y, Kamiya N, Goto M. J Hazard Mater; 2013 Jun 15; 254-255():79-88. PubMed ID: 23587931 [Abstract] [Full Text] [Related]
19. Hydrometallurgical recovery of metal values from sulfuric acid leaching liquor of spent lithium-ion batteries. Chen X, Chen Y, Zhou T, Liu D, Hu H, Fan S. Waste Manag; 2015 Apr 15; 38():349-56. PubMed ID: 25619126 [Abstract] [Full Text] [Related]
20. Recovery of critical metals from spent Li-ion batteries: Sequential leaching, precipitation, and cobalt-nickel separation using Cyphos IL104. Ilyas S, Ranjan Srivastava R, Singh VK, Chi R, Kim H. Waste Manag; 2022 Dec 15; 154():175-186. PubMed ID: 36244206 [Abstract] [Full Text] [Related] Page: [Next] [New Search]