These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


216 related items for PubMed ID: 31993081

  • 1. A population genomics appraisal suggests independent dispersals for bitter and sweet manioc in Brazilian Amazonia.
    Alves-Pereira A, Clement CR, Picanço-Rodrigues D, Veasey EA, Dequigiovanni G, Ramos SLF, Pinheiro JB, de Souza AP, Zucchi MI.
    Evol Appl; 2020 Feb; 13(2):342-361. PubMed ID: 31993081
    [Abstract] [Full Text] [Related]

  • 2. Patterns of nuclear and chloroplast genetic diversity and structure of manioc along major Brazilian Amazonian rivers.
    Alves-Pereira A, Clement CR, Picanço-Rodrigues D, Veasey EA, Dequigiovanni G, Ramos SLF, Pinheiro JB, Zucchi MI.
    Ann Bot; 2018 Mar 14; 121(4):625-639. PubMed ID: 29309531
    [Abstract] [Full Text] [Related]

  • 3. Geographic differences in patterns of genetic differentiation among bitter and sweet manioc (Manihot esculenta subsp. esculenta; Euphorbiaceae).
    Bradbury EJ, Duputié A, Delêtre M, Roullier C, Narváez-Trujillo A, Manu-Aduening JA, Emshwiller E, McKey D.
    Am J Bot; 2013 May 14; 100(5):857-66. PubMed ID: 23548671
    [Abstract] [Full Text] [Related]

  • 4. Selective signatures and high genome-wide diversity in traditional Brazilian manioc (Manihot esculenta Crantz) varieties.
    Alves-Pereira A, Zucchi MI, Clement CR, Viana JPG, Pinheiro JB, Veasey EA, de Souza AP.
    Sci Rep; 2022 Jan 24; 12(1):1268. PubMed ID: 35075210
    [Abstract] [Full Text] [Related]

  • 5. Genetic structure of traditional varieties of bitter manioc in three soils in Central Amazonia.
    Alves-Pereira A, Peroni N, Abreu AG, Gribel R, Clement CR.
    Genetica; 2011 Oct 24; 139(10):1259-71. PubMed ID: 22228136
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Large-scale genome-wide association study, using historical data, identifies conserved genetic architecture of cyanogenic glucoside content in cassava (Manihot esculenta Crantz) root.
    Ogbonna AC, Braatz de Andrade LR, Rabbi IY, Mueller LA, Jorge de Oliveira E, Bauchet GJ.
    Plant J; 2021 Feb 24; 105(3):754-770. PubMed ID: 33164279
    [Abstract] [Full Text] [Related]

  • 10. Direct archaeological evidence for Southwestern Amazonia as an early plant domestication and food production centre.
    Watling J, Shock MP, Mongeló GZ, Almeida FO, Kater T, De Oliveira PE, Neves EG.
    PLoS One; 2018 Feb 24; 13(7):e0199868. PubMed ID: 30044799
    [Abstract] [Full Text] [Related]

  • 11. The evolutionary fate of phenotypic plasticity and functional traits under domestication in manioc: changes in stem biomechanics and the appearance of stem brittleness.
    Ménard L, McKey D, Mühlen GS, Clair B, Rowe NP.
    PLoS One; 2013 Feb 24; 8(9):e74727. PubMed ID: 24023960
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. The domestication syndrome in vegetatively propagated field crops.
    Denham T, Barton H, Castillo C, Crowther A, Dotte-Sarout E, Florin SA, Pritchard J, Barron A, Zhang Y, Fuller DQ.
    Ann Bot; 2020 Mar 29; 125(4):581-597. PubMed ID: 31903489
    [Abstract] [Full Text] [Related]

  • 14. Early Holocene crop cultivation and landscape modification in Amazonia.
    Lombardo U, Iriarte J, Hilbert L, Ruiz-Pérez J, Capriles JM, Veit H.
    Nature; 2020 May 29; 581(7807):190-193. PubMed ID: 32404996
    [Abstract] [Full Text] [Related]

  • 15. Extensive crop-wild hybridization during Brassica evolution and selection during the domestication and diversification of Brassica crops.
    Saban JM, Romero AJ, Ezard THG, Chapman MA.
    Genetics; 2023 Apr 06; 223(4):. PubMed ID: 36810660
    [Abstract] [Full Text] [Related]

  • 16. A draft genome of sweet cherry (Prunus avium L.) reveals genome-wide and local effects of domestication.
    Pinosio S, Marroni F, Zuccolo A, Vitulo N, Mariette S, Sonnante G, Aravanopoulos FA, Ganopoulos I, Palasciano M, Vidotto M, Magris G, Iezzoni A, Vendramin GG, Morgante M.
    Plant J; 2020 Aug 06; 103(4):1420-1432. PubMed ID: 32391598
    [Abstract] [Full Text] [Related]

  • 17. Inter-retrotransposon-amplified polymorphism markers for germplasm characterization in Manihot esculenta (Euphorbiaceae).
    Oliveira-Silva AM, Silva GF, Dias MC, Clement CR, Sousa NR.
    Genet Mol Res; 2014 May 16; 13(2):3800-4. PubMed ID: 24938466
    [Abstract] [Full Text] [Related]

  • 18. Starch grain evidence for the preceramic dispersals of maize and root crops into tropical dry and humid forests of Panama.
    Dickau R, Ranere AJ, Cooke RG.
    Proc Natl Acad Sci U S A; 2007 Feb 27; 104(9):3651-6. PubMed ID: 17360697
    [Abstract] [Full Text] [Related]

  • 19. The domestication of Amazonia before European conquest.
    Clement CR, Denevan WM, Heckenberger MJ, Junqueira AB, Neves EG, Teixeira WG, Woods WI.
    Proc Biol Sci; 2015 Aug 07; 282(1812):20150813. PubMed ID: 26202998
    [Abstract] [Full Text] [Related]

  • 20. Domestication Genomics of the Open-Pollinated Scarlet Runner Bean (Phaseolus coccineus L.).
    Guerra-García A, Suárez-Atilano M, Mastretta-Yanes A, Delgado-Salinas A, Piñero D.
    Front Plant Sci; 2017 Aug 07; 8():1891. PubMed ID: 29187858
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.