These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
157 related items for PubMed ID: 31997388
1. A fair comparison of tree-based and parametric methods in multiple imputation by chained equations. Slade E, Naylor MG. Stat Med; 2020 Apr 15; 39(8):1156-1166. PubMed ID: 31997388 [Abstract] [Full Text] [Related]
2. Comparison of random forest and parametric imputation models for imputing missing data using MICE: a CALIBER study. Shah AD, Bartlett JW, Carpenter J, Nicholas O, Hemingway H. Am J Epidemiol; 2014 Mar 15; 179(6):764-74. PubMed ID: 24589914 [Abstract] [Full Text] [Related]
3. MISL: Multiple imputation by super learning. Carpenito T, Manjourides J. Stat Methods Med Res; 2022 Oct 15; 31(10):1904-1915. PubMed ID: 35658622 [Abstract] [Full Text] [Related]
4. SuperMICE: An Ensemble Machine Learning Approach to Multiple Imputation by Chained Equations. Laqueur HS, Shev AB, Kagawa RMC. Am J Epidemiol; 2022 Feb 19; 191(3):516-525. PubMed ID: 34788362 [Abstract] [Full Text] [Related]
5. Logistic regression vs. predictive mean matching for imputing binary covariates. Austin PC, van Buuren S. Stat Methods Med Res; 2023 Nov 19; 32(11):2172-2183. PubMed ID: 37750213 [Abstract] [Full Text] [Related]
6. A wide range of missing imputation approaches in longitudinal data: a simulation study and real data analysis. Jahangiri M, Kazemnejad A, Goldfeld KS, Daneshpour MS, Mostafaei S, Khalili D, Moghadas MR, Akbarzadeh M. BMC Med Res Methodol; 2023 Jul 06; 23(1):161. PubMed ID: 37415114 [Abstract] [Full Text] [Related]
7. Multiple imputation for longitudinal data using Bayesian lasso imputation model. Yamaguchi Y, Yoshida S, Misumi T, Maruo K. Stat Med; 2022 Mar 15; 41(6):1042-1058. PubMed ID: 35064581 [Abstract] [Full Text] [Related]
8. Accuracy of random-forest-based imputation of missing data in the presence of non-normality, non-linearity, and interaction. Hong S, Lynn HS. BMC Med Res Methodol; 2020 Jul 25; 20(1):199. PubMed ID: 32711455 [Abstract] [Full Text] [Related]
9. A comparison of existing methods for multiple imputation in individual participant data meta-analysis. Kunkel D, Kaizar EE. Stat Med; 2017 Sep 30; 36(22):3507-3532. PubMed ID: 28695667 [Abstract] [Full Text] [Related]
10. Multiple imputation for handling missing outcome data when estimating the relative risk. Sullivan TR, Lee KJ, Ryan P, Salter AB. BMC Med Res Methodol; 2017 Sep 06; 17(1):134. PubMed ID: 28877666 [Abstract] [Full Text] [Related]
11. Appropriate inclusion of interactions was needed to avoid bias in multiple imputation. Tilling K, Williamson EJ, Spratt M, Sterne JA, Carpenter JR. J Clin Epidemiol; 2016 Dec 06; 80():107-115. PubMed ID: 27445178 [Abstract] [Full Text] [Related]
12. Multiple imputation with missing data indicators. Beesley LJ, Bondarenko I, Elliot MR, Kurian AW, Katz SJ, Taylor JM. Stat Methods Med Res; 2021 Dec 06; 30(12):2685-2700. PubMed ID: 34643465 [Abstract] [Full Text] [Related]
13. Non-parametric approach for frequentist multiple imputation in survival analysis with missing covariates. Takeuchi Y, Ogawa M, Hagiwara Y, Matsuyama Y. Stat Methods Med Res; 2021 Jul 06; 30(7):1691-1707. PubMed ID: 34110942 [Abstract] [Full Text] [Related]
14. Imputing missing covariates in time-to-event analysis within distributed research networks: A simulation study. Li D, Wong J, Li X, Toh S, Wang R. Pharmacoepidemiol Drug Saf; 2023 Mar 06; 32(3):330-340. PubMed ID: 36380400 [Abstract] [Full Text] [Related]
15. Multiple imputation with sequential penalized regression. Zahid FM, Heumann C. Stat Methods Med Res; 2019 May 06; 28(5):1311-1327. PubMed ID: 29451087 [Abstract] [Full Text] [Related]
16. Multiple imputation by chained equations for systematically and sporadically missing multilevel data. Resche-Rigon M, White IR. Stat Methods Med Res; 2018 Jun 06; 27(6):1634-1649. PubMed ID: 27647809 [Abstract] [Full Text] [Related]
17. Multiple imputation methods for handling missing values in a longitudinal categorical variable with restrictions on transitions over time: a simulation study. De Silva AP, Moreno-Betancur M, De Livera AM, Lee KJ, Simpson JA. BMC Med Res Methodol; 2019 Jan 10; 19(1):14. PubMed ID: 30630434 [Abstract] [Full Text] [Related]
18. A bias-corrected estimator in multiple imputation for missing data. Tomita H, Fujisawa H, Henmi M. Stat Med; 2018 Oct 15; 37(23):3373-3386. PubMed ID: 29845646 [Abstract] [Full Text] [Related]
19. Estimating the Prevalence of Injection Drug Use Among Acute Hepatitis C Cases From a National Surveillance System: Application of Random Forest-Based Multiple Imputation. Yin S, Ly KN, Barker LK, Bixler D, Thompson ND, Gupta N. J Public Health Manag Pract; 2018 Oct 15; 30(5):733-743. PubMed ID: 39041767 [Abstract] [Full Text] [Related]
20. Performance of Multiple Imputation Using Modern Machine Learning Methods in Electronic Health Records Data. Getz K, Hubbard RA, Linn KA. Epidemiology; 2023 Mar 01; 34(2):206-215. PubMed ID: 36722803 [Abstract] [Full Text] [Related] Page: [Next] [New Search]