These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


107 related items for PubMed ID: 32005396

  • 1. Regulation of micoRNA2111 and its target IbFBK in sweet potato on wounding.
    Weng ST, Kuo YW, King YC, Lin HH, Tu PY, Tung KS, Jeng ST.
    Plant Sci; 2020 Mar; 292():110391. PubMed ID: 32005396
    [Abstract] [Full Text] [Related]

  • 2. MicroR828 regulates lignin and H2O2 accumulation in sweet potato on wounding.
    Lin JS, Lin CC, Lin HH, Chen YC, Jeng ST.
    New Phytol; 2012 Oct; 196(2):427-440. PubMed ID: 22931461
    [Abstract] [Full Text] [Related]

  • 3. Interaction of small RNA-8105 and the intron of IbMYB1 RNA regulates IbMYB1 family genes through secondary siRNAs and DNA methylation after wounding.
    Lin JS, Lin CC, Li YC, Wu MT, Tsai MH, Hsing YI, Jeng ST.
    Plant J; 2013 Sep; 75(5):781-94. PubMed ID: 23663233
    [Abstract] [Full Text] [Related]

  • 4. High-throughput deep sequencing reveals the important role that microRNAs play in the salt response in sweet potato (Ipomoea batatas L.).
    Yang Z, Zhu P, Kang H, Liu L, Cao Q, Sun J, Dong T, Zhu M, Li Z, Xu T.
    BMC Genomics; 2020 Feb 17; 21(1):164. PubMed ID: 32066373
    [Abstract] [Full Text] [Related]

  • 5. Sweet potato NAC transcription factor, IbNAC1, upregulates sporamin gene expression by binding the SWRE motif against mechanical wounding and herbivore attack.
    Chen SP, Lin IW, Chen X, Huang YH, Chang SC, Lo HS, Lu HH, Yeh KW.
    Plant J; 2016 May 17; 86(3):234-48. PubMed ID: 26996980
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Elevated carbon dioxide and drought modulate physiology and storage-root development in sweet potato by regulating microRNAs.
    Saminathan T, Alvarado A, Lopez C, Shinde S, Gajanayake B, Abburi VL, Vajja VG, Jagadeeswaran G, Raja Reddy K, Nimmakayala P, Reddy UK.
    Funct Integr Genomics; 2019 Jan 17; 19(1):171-190. PubMed ID: 30244303
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Molecular characterization of the sweet potato peroxidase SWPA4 promoter which responds to abiotic stresses and pathogen infection.
    Ryu SH, Kim YH, Kim CY, Park SY, Kwon SY, Lee HS, Kwak SS.
    Physiol Plant; 2009 Apr 17; 135(4):390-9. PubMed ID: 19226312
    [Abstract] [Full Text] [Related]

  • 10. In silico identification and characterization of conserved miRNAs and their target genes in sweet potato (Ipomoea batatas L.) expressed sequence tags (ESTs).
    Dehury B, Panda D, Sahu J, Sahu M, Sarma K, Barooah M, Sen P, Modi M.
    Plant Signal Behav; 2013 Apr 17; 8(12):e26543. PubMed ID: 24067297
    [Abstract] [Full Text] [Related]

  • 11. Integrated transcriptome, small RNA and degradome sequencing approaches proffer insights into chlorogenic acid biosynthesis in leafy sweet potato.
    Liu Y, Su W, Wang L, Lei J, Chai S, Zhang W, Yang X.
    PLoS One; 2021 Apr 17; 16(1):e0245266. PubMed ID: 33481815
    [Abstract] [Full Text] [Related]

  • 12. Involvement of hydrogen peroxide and nitric oxide in expression of the ipomoelin gene from sweet potato.
    Jih PJ, Chen YC, Jeng ST.
    Plant Physiol; 2003 May 17; 132(1):381-9. PubMed ID: 12746543
    [Abstract] [Full Text] [Related]

  • 13. Genome-wide identification, characterisation and expression profile analysis of DEAD-box family genes in sweet potato wild ancestor Ipomoea trifida under abiotic stresses.
    Wan R, Liu J, Yang Z, Zhu P, Cao Q, Xu T.
    Genes Genomics; 2020 Mar 17; 42(3):325-335. PubMed ID: 31894476
    [Abstract] [Full Text] [Related]

  • 14. Cloning and characterization of a novel GIGANTEA gene in sweet potato.
    Tang W, Yan H, Su ZX, Park SC, Liu YJ, Zhang YG, Wang X, Kou M, Ma DF, Kwak SS, Li Q.
    Plant Physiol Biochem; 2017 Jul 17; 116():27-35. PubMed ID: 28486137
    [Abstract] [Full Text] [Related]

  • 15. Molecular Characterization and Target Prediction of Candidate miRNAs Related to Abiotic Stress Responses and/or Storage Root Development in Sweet Potato.
    Sun L, Yang Y, Pan H, Zhu J, Zhu M, Xu T, Li Z, Dong T.
    Genes (Basel); 2022 Jan 06; 13(1):. PubMed ID: 35052451
    [Abstract] [Full Text] [Related]

  • 16. A new MADS-box gene (IbMADS10) from sweet potato (Ipomoea batatas (L.) Lam) is involved in the accumulation of anthocyanin.
    Lalusin AG, Nishita K, Kim SH, Ohta M, Fujimura T.
    Mol Genet Genomics; 2006 Jan 06; 275(1):44-54. PubMed ID: 16333667
    [Abstract] [Full Text] [Related]

  • 17. MicroR408 regulates defense response upon wounding in sweet potato.
    Kuo YW, Lin JS, Li YC, Jhu MY, King YC, Jeng ST.
    J Exp Bot; 2019 Jan 07; 70(2):469-483. PubMed ID: 30403812
    [Abstract] [Full Text] [Related]

  • 18. The p38-like MAP kinase modulated H2O2 accumulation in wounding signaling pathways of sweet potato.
    Lin HH, King YC, Li YC, Lin CC, Chen YC, Lin JS, Jeng ST.
    Plant Sci; 2019 Mar 07; 280():305-313. PubMed ID: 30824008
    [Abstract] [Full Text] [Related]

  • 19. Identification of Ipomoea batatas anti-cancer peptide (IbACP)-responsive genes in sweet potato leaves.
    Lin HH, Lin KH, Wu KF, Chen YC.
    Plant Sci; 2021 Apr 07; 305():110849. PubMed ID: 33691955
    [Abstract] [Full Text] [Related]

  • 20. A non-tandem CCCH-type zinc-finger protein, IbC3H18, functions as a nuclear transcriptional activator and enhances abiotic stress tolerance in sweet potato.
    Zhang H, Gao X, Zhi Y, Li X, Zhang Q, Niu J, Wang J, Zhai H, Zhao N, Li J, Liu Q, He S.
    New Phytol; 2019 Sep 07; 223(4):1918-1936. PubMed ID: 31091337
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 6.