These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Pathology, protein expression and signaling in myxomatous mitral valve degeneration: comparison of dogs and humans. Aupperle H, Disatian S. J Vet Cardiol; 2012 Mar; 14(1):59-71. PubMed ID: 22364722 [Abstract] [Full Text] [Related]
5. Emerging pathogenic mechanisms in human myxomatous mitral valve: lessons from past and novel data. Hulin A, Deroanne C, Lambert C, Defraigne JO, Nusgens B, Radermecker M, Colige A. Cardiovasc Pathol; 2013 Mar; 22(4):245-50. PubMed ID: 23261354 [Abstract] [Full Text] [Related]
17. TGF-β-induced PI3K/AKT/mTOR pathway controls myofibroblast differentiation and secretory phenotype of valvular interstitial cells through the modulation of cellular senescence in a naturally occurring in vitro canine model of myxomatous mitral valve disease. Tang Q, Markby GR, MacNair AJ, Tang K, Tkacz M, Parys M, Phadwal K, MacRae VE, Corcoran BM. Cell Prolif; 2023 Jun 01; 56(6):e13435. PubMed ID: 36869852 [Abstract] [Full Text] [Related]
18. Signaling pathways in mitral valve degeneration. Orton EC, Lacerda CM, MacLea HB. J Vet Cardiol; 2012 Mar 01; 14(1):7-17. PubMed ID: 22364692 [Abstract] [Full Text] [Related]
19. Deletion of Fstl1 (Follistatin-Like 1) From the Endocardial/Endothelial Lineage Causes Mitral Valve Disease. Prakash S, Borreguero LJJ, Sylva M, Flores Ruiz L, Rezai F, Gunst QD, de la Pompa JL, Ruijter JM, van den Hoff MJB. Arterioscler Thromb Vasc Biol; 2017 Sep 01; 37(9):e116-e130. PubMed ID: 28705792 [Abstract] [Full Text] [Related]