These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
144 related items for PubMed ID: 32012519
21. Modeling multiple-frequency electron cyclotron resonance heating. Spencer JA, Kim C, Kim JS, Evstatiev EG, Svidzinski V, Cluggish B. Rev Sci Instrum; 2014 Feb; 85(2):02A914. PubMed ID: 24593493 [Abstract] [Full Text] [Related]
22. Upper hybrid resonance heating experiments by X-mode microwaves on electron cyclotron resonance ion source. Kato Y, Nishiokada T, Hamada K, Onishi K, Takeda T, Okumura K, Omori T, Kubo W, Ishihara M, Harisaki S. Rev Sci Instrum; 2020 Jan 01; 91(1):013315. PubMed ID: 32012523 [Abstract] [Full Text] [Related]
28. 36-segmented high magnetic field hexapole magnets for electron cyclotron resonance ion source. Sun LT, Zhao HW, Zhang ZM, Wang H, Ma BH, Zhang XZ, Li XX, Feng YC, Li JY, Guo XH, Shang Y, Zhao HY. Rev Sci Instrum; 2007 May 01; 78(5):053302. PubMed ID: 17552813 [Abstract] [Full Text] [Related]
29. Towards a better comprehension of plasma formation and heating in high performances electron cyclotron resonance ion sources (invited). Mascali D, Gammino S, Celona L, Ciavola G. Rev Sci Instrum; 2012 Feb 01; 83(2):02A336. PubMed ID: 22380183 [Abstract] [Full Text] [Related]
30. Electron cyclotron resonance heating by magnetic filter field in a negative hydrogen ion source. Kim JY, Cho WH, Dang JJ, Chung KJ, Hwang YS. Rev Sci Instrum; 2016 Feb 01; 87(2):02B117. PubMed ID: 26931999 [Abstract] [Full Text] [Related]
33. Experimental results of superimposing 9.9 GHz extraordinary mode microwaves on 2.45 GHz ECRIS plasma. Nishiokada T, Nagaya T, Hagino S, Otsuka T, Muramatsu M, Sato F, Kitagawa A, Kato Y. Rev Sci Instrum; 2016 Feb 01; 87(2):02A714. PubMed ID: 26931932 [Abstract] [Full Text] [Related]
34. Electron cyclotron resonance ion sources with arc-shaped coils. Suominen P, Wenander F. Rev Sci Instrum; 2008 Feb 01; 79(2 Pt 2):02A305. PubMed ID: 18315095 [Abstract] [Full Text] [Related]
35. First results from the new RIKEN superconducting electron cyclotron resonance ion source (invited). Nakagawa T, Higurashi Y, Ohnishi J, Aihara T, Tamura M, Uchiyama A, Okuno H, Kusaka K, Kidera M, Ikezawa E, Fujimaki M, Sato Y, Watanabe Y, Komiyama M, Kase M, Goto A, Kamigaito O, Yano Y. Rev Sci Instrum; 2010 Feb 01; 81(2):02A320. PubMed ID: 20192341 [Abstract] [Full Text] [Related]
36. Influence of frequency tuning and double-frequency heating on ions extracted from an electron cyclotron resonance ion source. Maimone F, Celona L, Lang R, Mäder J, Rossbach J, Spädtke P, Tinschert K. Rev Sci Instrum; 2011 Dec 01; 82(12):123302. PubMed ID: 22225210 [Abstract] [Full Text] [Related]
37. Bio-Nano ECRIS: an electron cyclotron resonance ion source for new materials production. Uchida T, Minezaki H, Tanaka K, Muramatsu M, Asaji T, Kato Y, Kitagawa A, Biri S, Yoshida Y. Rev Sci Instrum; 2010 Feb 01; 81(2):02A306. PubMed ID: 20192327 [Abstract] [Full Text] [Related]
38. Wall-loss distribution of charge breeding ions in an electron cyclotron resonance ion source. Jeong SC, Oyaizu M, Imai N, Hirayama Y, Ishiyama H, Miyatake H, Niki K, Okada M, Watanabe YX, Otokawa Y, Osa A, Ichikawa S. Rev Sci Instrum; 2011 Mar 01; 82(3):033508. PubMed ID: 21456738 [Abstract] [Full Text] [Related]