These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


104 related items for PubMed ID: 32013069

  • 1. Validation of Deep Learning-Based Artifact Correction on Synthetic FLAIR Images in a Different Scanning Environment.
    Ryu KH, Baek HJ, Gho SM, Ryu K, Kim DH, Park SE, Ha JY, Cho SB, Lee JS.
    J Clin Med; 2020 Jan 29; 9(2):. PubMed ID: 32013069
    [Abstract] [Full Text] [Related]

  • 2. Data-driven synthetic MRI FLAIR artifact correction via deep neural network.
    Ryu K, Nam Y, Gho SM, Jang J, Lee HJ, Cha J, Baek HJ, Park J, Kim DH.
    J Magn Reson Imaging; 2019 Nov 29; 50(5):1413-1423. PubMed ID: 30884007
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Accelerating FLAIR imaging via deep learning reconstruction: potential for evaluating white matter hyperintensities.
    Nishioka N, Shimizu Y, Kaneko Y, Shirai T, Suzuki A, Amemiya T, Ochi H, Bito Y, Takizawa M, Ikebe Y, Kameda H, Harada T, Fujima N, Kudo K.
    Jpn J Radiol; 2024 Sep 24. PubMed ID: 39316286
    [Abstract] [Full Text] [Related]

  • 5. Image quality at synthetic brain magnetic resonance imaging in children.
    Lee SM, Choi YH, Cheon JE, Kim IO, Cho SH, Kim WH, Kim HJ, Cho HH, You SK, Park SH, Hwang MJ.
    Pediatr Radiol; 2017 Nov 24; 47(12):1638-1647. PubMed ID: 28638982
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. The use of combined T2-weighted and FLAIR synthetic magnetic resonance images to improve white matter region contrast: a feasibility study.
    Fujiwara Y, Inoue Y, Kanamoto M, Ishida S, Adachi T, Kimura H.
    Radiol Phys Technol; 2019 Mar 24; 12(1):118-125. PubMed ID: 30666614
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Feasibility of Brain Imaging Using a Digital Surround Technology Body Coil: A Study Based on SRGAN-VGG Convolutional Neural Networks.
    Liu YW, Niu HJ, Yin HX, Xia JJ, Ren PL, Zhang TT, Li J, Lv H, Ding HY, Ren JL, Wang ZC.
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov 24; 2021():3734-3737. PubMed ID: 34892048
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. KIKI-net: cross-domain convolutional neural networks for reconstructing undersampled magnetic resonance images.
    Eo T, Jun Y, Kim T, Jang J, Lee HJ, Hwang D.
    Magn Reson Med; 2018 Nov 24; 80(5):2188-2201. PubMed ID: 29624729
    [Abstract] [Full Text] [Related]

  • 15. Optimal combination of FLAIR and T2-weighted MRI for improved lesion contrast in multiple sclerosis.
    Gabr RE, Hasan KM, Haque ME, Nelson FM, Wolinsky JS, Narayana PA.
    J Magn Reson Imaging; 2016 Nov 24; 44(5):1293-1300. PubMed ID: 27126898
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. MRI Gibbs-ringing artifact reduction by means of machine learning using convolutional neural networks.
    Zhang Q, Ruan G, Yang W, Liu Y, Zhao K, Feng Q, Chen W, Wu EX, Feng Y.
    Magn Reson Med; 2019 Dec 24; 82(6):2133-2145. PubMed ID: 31373061
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 6.