These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


325 related items for PubMed ID: 32013995

  • 1. Redesign and reconstruction of a steviol-biosynthetic pathway for enhanced production of steviol in Escherichia coli.
    Moon JH, Lee K, Lee JH, Lee PC.
    Microb Cell Fact; 2020 Feb 03; 19(1):20. PubMed ID: 32013995
    [Abstract] [Full Text] [Related]

  • 2. Metabolic engineering of the Stevia rebaudiana ent-kaurene biosynthetic pathway in recombinant Escherichia coli.
    Kong MK, Kang HJ, Kim JH, Oh SH, Lee PC.
    J Biotechnol; 2015 Nov 20; 214():95-102. PubMed ID: 26392384
    [Abstract] [Full Text] [Related]

  • 3. Spatial organisation of four enzymes from Stevia rebaudiana that are involved in steviol glycoside synthesis.
    Humphrey TV, Richman AS, Menassa R, Brandle JE.
    Plant Mol Biol; 2006 May 20; 61(1-2):47-62. PubMed ID: 16786291
    [Abstract] [Full Text] [Related]

  • 4. A Combinatorial Approach To Study Cytochrome P450 Enzymes for De Novo Production of Steviol Glucosides in Baker's Yeast.
    Gold ND, Fossati E, Hansen CC, DiFalco M, Douchin V, Martin VJJ.
    ACS Synth Biol; 2018 Dec 21; 7(12):2918-2929. PubMed ID: 30474973
    [Abstract] [Full Text] [Related]

  • 5. Functional characterization of ent-copalyl diphosphate synthase, kaurene synthase and kaurene oxidase in the Salvia miltiorrhiza gibberellin biosynthetic pathway.
    Su P, Tong Y, Cheng Q, Hu Y, Zhang M, Yang J, Teng Z, Gao W, Huang L.
    Sci Rep; 2016 Mar 14; 6():23057. PubMed ID: 26971881
    [Abstract] [Full Text] [Related]

  • 6. Biosynthesis of the Calorie-Free Sweetener Precursor ent-Kaurenoic Acid from CO2 Using Engineered Cyanobacteria.
    Ko SC, Woo HM.
    ACS Synth Biol; 2020 Nov 20; 9(11):2979-2985. PubMed ID: 33175492
    [Abstract] [Full Text] [Related]

  • 7. De novo production of versatile oxidized kaurene diterpenes in Escherichia coli.
    Sun Y, Chen Z, Wang G, Lv H, Mao Y, Ma K, Wang Y.
    Metab Eng; 2022 Sep 20; 73():201-213. PubMed ID: 35934176
    [Abstract] [Full Text] [Related]

  • 8. Overexpression of SrUGT85C2 from Stevia reduced growth and yield of transgenic Arabidopsis by influencing plastidial MEP pathway.
    Guleria P, Masand S, Yadav SK.
    Gene; 2014 Apr 15; 539(2):250-7. PubMed ID: 24518812
    [Abstract] [Full Text] [Related]

  • 9. Overexpression of SrDXS1 and SrKAH enhances steviol glycosides content in transgenic Stevia plants.
    Zheng J, Zhuang Y, Mao HZ, Jang IC.
    BMC Plant Biol; 2019 Jan 03; 19(1):1. PubMed ID: 30606102
    [Abstract] [Full Text] [Related]

  • 10. Blue-light irradiation up-regulates the ent-kaurene synthase gene and affects the avoidance response of protonemal growth in Physcomitrella patens.
    Miyazaki S, Toyoshima H, Natsume M, Nakajima M, Kawaide H.
    Planta; 2014 Jul 03; 240(1):117-24. PubMed ID: 24715198
    [Abstract] [Full Text] [Related]

  • 11. Enhanced production of steviol glycosides in mycorrhizal plants: a concerted effect of arbuscular mycorrhizal symbiosis on transcription of biosynthetic genes.
    Mandal S, Upadhyay S, Singh VP, Kapoor R.
    Plant Physiol Biochem; 2015 Apr 03; 89():100-6. PubMed ID: 25734328
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Diterpene synthesis in Stevia rebaudiana: recruitment and up-regulation of key enzymes from the gibberellin biosynthetic pathway.
    Richman AS, Gijzen M, Starratt AN, Yang Z, Brandle JE.
    Plant J; 1999 Aug 03; 19(4):411-21. PubMed ID: 10504563
    [Abstract] [Full Text] [Related]

  • 14. Metabolic engineering for the synthesis of steviol glycosides: current status and future prospects.
    Zhou X, Gong M, Lv X, Liu Y, Li J, Du G, Liu L.
    Appl Microbiol Biotechnol; 2021 Jul 03; 105(13):5367-5381. PubMed ID: 34196745
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Comparative Transcriptomics Unravel Biochemical Specialization of Leaf Tissues of Stevia for Diterpenoid Production.
    Kim MJ, Jin J, Zheng J, Wong L, Chua NH, Jang IC.
    Plant Physiol; 2015 Dec 03; 169(4):2462-80. PubMed ID: 26438788
    [Abstract] [Full Text] [Related]

  • 17. Diversion of carbon flux from gibberellin to steviol biosynthesis by over-expressing SrKA13H induced dwarfism and abnormality in pollen germination and seed set behaviour of transgenic Arabidopsis.
    Guleria P, Masand S, Yadav SK.
    J Exp Bot; 2015 Jul 03; 66(13):3907-16. PubMed ID: 25954046
    [Abstract] [Full Text] [Related]

  • 18. Heterologous Biosynthesis of Kauralexin A1 in Saccharomyces cerevisiae through Metabolic and Enzyme Engineering.
    Chen R, Wang J, Xu J, Nie S, Chen C, Li Y, Li Y, He J, Li W, Wen M, Qiao J.
    J Agric Food Chem; 2024 Apr 03; 72(13):7308-7317. PubMed ID: 38529564
    [Abstract] [Full Text] [Related]

  • 19. Diterpene synthases facilitating production of the kaurane skeleton of eriocalyxin B in the medicinal plant Isodon eriocalyx.
    Du G, Gong HY, Feng KN, Chen QQ, Yang YL, Fu XL, Lu S, Zeng Y.
    Phytochemistry; 2019 Feb 03; 158():96-102. PubMed ID: 30496917
    [Abstract] [Full Text] [Related]

  • 20. Molecular basis for branched steviol glucoside biosynthesis.
    Lee SG, Salomon E, Yu O, Jez JM.
    Proc Natl Acad Sci U S A; 2019 Jun 25; 116(26):13131-13136. PubMed ID: 31182573
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 17.