These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


372 related items for PubMed ID: 32014404

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Importance of phase enhancement for machine learning classification of solid renal masses using texture analysis features at multi-phasic CT.
    Schieda N, Nguyen K, Thornhill RE, McInnes MDF, Wu M, James N.
    Abdom Radiol (NY); 2020 Sep; 45(9):2786-2796. PubMed ID: 32627049
    [Abstract] [Full Text] [Related]

  • 7. Automated classification of solid renal masses on contrast-enhanced computed tomography images using convolutional neural network with decision fusion.
    Zabihollahy F, Schieda N, Krishna S, Ukwatta E.
    Eur Radiol; 2020 Sep; 30(9):5183-5190. PubMed ID: 32350661
    [Abstract] [Full Text] [Related]

  • 8. Machine learning-based unenhanced CT texture analysis for predicting BAP1 mutation status of clear cell renal cell carcinomas.
    Kocak B, Durmaz ES, Kaya OK, Kilickesmez O.
    Acta Radiol; 2020 Jun; 61(6):856-864. PubMed ID: 31635476
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Effect of phase of enhancement on texture analysis in renal masses evaluated with non-contrast-enhanced, corticomedullary, and nephrographic phase-enhanced CT images.
    Nguyen K, Schieda N, James N, McInnes MDF, Wu M, Thornhill RE.
    Eur Radiol; 2021 Mar; 31(3):1676-1686. PubMed ID: 32914197
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Radiogenomics in Clear Cell Renal Cell Carcinoma: Machine Learning-Based High-Dimensional Quantitative CT Texture Analysis in Predicting PBRM1 Mutation Status.
    Kocak B, Durmaz ES, Ates E, Ulusan MB.
    AJR Am J Roentgenol; 2019 Mar; 212(3):W55-W63. PubMed ID: 30601030
    [Abstract] [Full Text] [Related]

  • 14. Influence of segmentation margin on machine learning-based high-dimensional quantitative CT texture analysis: a reproducibility study on renal clear cell carcinomas.
    Kocak B, Ates E, Durmaz ES, Ulusan MB, Kilickesmez O.
    Eur Radiol; 2019 Sep; 29(9):4765-4775. PubMed ID: 30747300
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Shape and texture-based radiomics signature on CT effectively discriminates benign from malignant renal masses.
    Yap FY, Varghese BA, Cen SY, Hwang DH, Lei X, Desai B, Lau C, Yang LL, Fullenkamp AJ, Hajian S, Rivas M, Gupta MN, Quinn BD, Aron M, Desai MM, Aron M, Oberai AA, Gill IS, Duddalwar VA.
    Eur Radiol; 2021 Feb; 31(2):1011-1021. PubMed ID: 32803417
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 19.