These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


223 related items for PubMed ID: 32015024

  • 1. Representational Neural Mapping of Dexterous Grasping Before Lifting in Humans.
    Marneweck M, Grafton ST.
    J Neurosci; 2020 Mar 25; 40(13):2708-2716. PubMed ID: 32015024
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Visual information following object grasp supports digit position variability and swift anticipatory force control.
    Bland JT, Davare M, Marneweck M.
    J Neurophysiol; 2023 Jun 01; 129(6):1389-1399. PubMed ID: 37162174
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Dexterous manipulation: differential sensitivity of manipulation and grasp forces to task requirements.
    Noll WP, Wu YH, Santello M.
    J Neurophysiol; 2024 Jul 01; 132(1):259-276. PubMed ID: 38863425
    [Abstract] [Full Text] [Related]

  • 6. Probing the reaching-grasping network in humans through multivoxel pattern decoding.
    Di Bono MG, Begliomini C, Castiello U, Zorzi M.
    Brain Behav; 2015 Nov 01; 5(11):e00412. PubMed ID: 26664793
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Human neuroimaging reveals the subcomponents of grasping, reaching and pointing actions.
    Cavina-Pratesi C, Connolly JD, Monaco S, Figley TD, Milner AD, Schenk T, Culham JC.
    Cortex; 2018 Jan 01; 98():128-148. PubMed ID: 28668221
    [Abstract] [Full Text] [Related]

  • 10. Distinct sensorimotor mechanisms underlie the control of grasp and manipulation forces for dexterous manipulation.
    Wu YH, Santello M.
    Sci Rep; 2023 Jul 25; 13(1):12037. PubMed ID: 37491565
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Control of grasp stability in humans under different frictional conditions during multidigit manipulation.
    Burstedt MK, Flanagan JR, Johansson RS.
    J Neurophysiol; 1999 Nov 25; 82(5):2393-405. PubMed ID: 10561413
    [Abstract] [Full Text] [Related]

  • 15. On the role of the ventral premotor cortex and anterior intraparietal area for predictive and reactive scaling of grip force.
    Dafotakis M, Sparing R, Eickhoff SB, Fink GR, Nowak DA.
    Brain Res; 2008 Sep 04; 1228():73-80. PubMed ID: 18601912
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Grasping with a Twist: Dissociating Action Goals from Motor Actions in Human Frontoparietal Circuits.
    Rens G, Figley TD, Gallivan JP, Liu Y, Culham JC.
    J Neurosci; 2023 Aug 09; 43(32):5831-5847. PubMed ID: 37474309
    [Abstract] [Full Text] [Related]

  • 19. Anticipatory planning and control of grasp positions and forces for dexterous two-digit manipulation.
    Fu Q, Zhang W, Santello M.
    J Neurosci; 2010 Jul 07; 30(27):9117-26. PubMed ID: 20610745
    [Abstract] [Full Text] [Related]

  • 20. Anticipatory scaling of grip forces when lifting objects of everyday life.
    Hermsdörfer J, Li Y, Randerath J, Goldenberg G, Eidenmüller S.
    Exp Brain Res; 2011 Jul 07; 212(1):19-31. PubMed ID: 21541765
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.