These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
161 related items for PubMed ID: 32018078
1. Laccases 2 & 3 as biomarkers of Botrytis cinerea infection in sweet white wines. Ployon S, Attina A, Vialaret J, Walker AS, Hirtz C, Saucier C. Food Chem; 2020 Jun 15; 315():126233. PubMed ID: 32018078 [Abstract] [Full Text] [Related]
2. Comparative protein profile analysis of wines made from Botrytis cinerea infected and healthy grapes reveals a novel biomarker for gushing in sparkling wine. Kupfer VM, Vogt EI, Ziegler T, Vogel RF, Niessen L. Food Res Int; 2017 Sep 15; 99(Pt 1):501-509. PubMed ID: 28784511 [Abstract] [Full Text] [Related]
3. Developmental and Metabolic Plasticity of White-Skinned Grape Berries in Response to Botrytis cinerea during Noble Rot. Blanco-Ulate B, Amrine KC, Collins TS, Rivero RM, Vicente AR, Morales-Cruz A, Doyle CL, Ye Z, Allen G, Heymann H, Ebeler SE, Cantu D. Plant Physiol; 2015 Dec 15; 169(4):2422-43. PubMed ID: 26450706 [Abstract] [Full Text] [Related]
4. High-proline proteins in experimental hazy white wine produced from partially botrytized grapes. Perutka Z, Šufeisl M, Strnad M, Šebela M. Biotechnol Appl Biochem; 2019 May 15; 66(3):398-411. PubMed ID: 30715757 [Abstract] [Full Text] [Related]
5. Destructive and non-destructive early detection of postharvest noble rot (Botrytis cinerea) in wine grapes aimed at producing high-quality wines. Modesti M, Alfieri G, Chieffo C, Mencarelli F, Vannini A, Catalani A, Chilosi G, Bellincontro A. J Sci Food Agric; 2024 Mar 15; 104(4):2314-2325. PubMed ID: 37950679 [Abstract] [Full Text] [Related]
6. Aroma compounds and characteristics of noble-rot wines of Chardonnay grapes artificially botrytized in the vineyard. Wang XJ, Tao YS, Wu Y, An RY, Yue ZY. Food Chem; 2017 Jul 01; 226():41-50. PubMed ID: 28254017 [Abstract] [Full Text] [Related]
7. Metabolic influence of Botrytis cinerea infection in champagne base wine. Hong YS, Cilindre C, Liger-Belair G, Jeandet P, Hertkorn N, Schmitt-Kopplin P. J Agric Food Chem; 2011 Jul 13; 59(13):7237-45. PubMed ID: 21604814 [Abstract] [Full Text] [Related]
8. Resveratrol acts as a natural profungicide and induces self-intoxication by a specific laccase. Schouten A, Wagemakers L, Stefanato FL, van der Kaaij RM, van Kan JA. Mol Microbiol; 2002 Feb 13; 43(4):883-94. PubMed ID: 11929539 [Abstract] [Full Text] [Related]
9. Proteomic approach to identify champagne wine proteins as modified by Botrytis cinerea infection. Cilindre C, Jégou S, Hovasse A, Schaeffer C, Castro AJ, Clément C, Van Dorsselaer A, Jeandet P, Marchal R. J Proteome Res; 2008 Mar 13; 7(3):1199-208. PubMed ID: 18205300 [Abstract] [Full Text] [Related]
10. Botrytis cinerea expression profile and metabolism differs between noble and grey rot of grapes. Otto M, Geml J, Hegyi ÁI, Hegyi-Kaló J, Pierneef R, Pogány M, Kun J, Gyenesei A, Váczy KZ. Food Microbiol; 2022 Sep 13; 106():104037. PubMed ID: 35690441 [Abstract] [Full Text] [Related]
11. Botrytized wines. Magyar I. Adv Food Nutr Res; 2011 Sep 13; 63():147-206. PubMed ID: 21867895 [Abstract] [Full Text] [Related]
12. Copper induces transcription of BcLCC2 laccase gene in phytopathogenic fungus, Botrytis cinerea. Buddhika UVA, Savocchia S, Steel CC. Mycology; 2020 Feb 11; 12(1):48-57. PubMed ID: 33628608 [Abstract] [Full Text] [Related]
13. Oxidation of Wine Polyphenols by Secretomes of Wild Botrytis cinerea Strains from White and Red Grape Varieties and Determination of Their Specific Laccase Activity. Zimdars S, Hitschler J, Schieber A, Weber F. J Agric Food Chem; 2017 Dec 06; 65(48):10582-10590. PubMed ID: 29125293 [Abstract] [Full Text] [Related]
14. Odorous impact of volatile thiols on the aroma of young botrytized sweet wines: identification and quantification of new sulfanyl alcohols. Sarrazin E, Shinkaruk S, Tominaga T, Bennetau B, Frérot E, Dubourdieu D. J Agric Food Chem; 2007 Feb 21; 55(4):1437-44. PubMed ID: 17249683 [Abstract] [Full Text] [Related]
15. Metabolomics reveals simultaneous influences of plant defence system and fungal growth in Botrytis cinerea-infected Vitis vinifera cv. Chardonnay berries. Hong YS, Martinez A, Liger-Belair G, Jeandet P, Nuzillard JM, Cilindre C. J Exp Bot; 2012 Oct 21; 63(16):5773-85. PubMed ID: 22945941 [Abstract] [Full Text] [Related]
16. Plant and fungus transcriptomic data from grapevine berries undergoing artificially-induced noble rot caused by Botrytis cinerea. Lovato A, Zenoni S, Tornielli GB, Colombo T, Vandelle E, Polverari A. Data Brief; 2019 Aug 21; 25():104150. PubMed ID: 31304217 [Abstract] [Full Text] [Related]
17. Selection of Botrytis cinerea and Saccharomyces cerevisiae strains for the improvement and valorization of Italian passito style wines. Azzolini M, Tosi E, Faccio S, Lorenzini M, Torriani S, Zapparoli G. FEMS Yeast Res; 2013 Sep 21; 13(6):540-52. PubMed ID: 23710966 [Abstract] [Full Text] [Related]
18. Stereoisomeric distribution of 3-mercaptohexan-1-ol and 3-mercaptohexyl acetate in dry and sweet white wines made from Vitis vinifera (Var. Sauvignon Blanc and Semillon). Tominaga T, Niclass Y, Frérot E, Dubourdieu D. J Agric Food Chem; 2006 Sep 20; 54(19):7251-5. PubMed ID: 16968090 [Abstract] [Full Text] [Related]
19. Evidence for protein degradation by Botrytis cinerea and relationships with alteration of synthetic wine foaming properties. Marchal R, Warchol M, Cilindre C, Jeandet P. J Agric Food Chem; 2006 Jul 12; 54(14):5157-65. PubMed ID: 16819930 [Abstract] [Full Text] [Related]
20. Oenological tannins to prevent Botrytis cinerea damage in grapes and musts: Kinetics and electrophoresis characterization of laccase. Vignault A, Gombau J, Jourdes M, Moine V, Canals JM, Fermaud M, Roudet J, Zamora F, Teissedre PL. Food Chem; 2020 Jun 30; 316():126334. PubMed ID: 32044702 [Abstract] [Full Text] [Related] Page: [Next] [New Search]