These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Functional and pharmacological evaluation of novel GLA variants in Fabry disease identifies six (two de novo) causative mutations and two amenable variants to the chaperone DGJ. Ferri L, Malesci D, Fioravanti A, Bagordo G, Filippini A, Ficcadenti A, Manna R, Antuzzi D, Verrecchia E, Donati I, Mignani R, Cavicchi C, Guerrini R, Morrone A. Clin Chim Acta; 2018 Jun; 481():25-33. PubMed ID: 29476735 [Abstract] [Full Text] [Related]
5. The pharmacological chaperone 1-deoxygalactonojirimycin increases alpha-galactosidase A levels in Fabry patient cell lines. Benjamin ER, Flanagan JJ, Schilling A, Chang HH, Agarwal L, Katz E, Wu X, Pine C, Wustman B, Desnick RJ, Lockhart DJ, Valenzano KJ. J Inherit Metab Dis; 2009 Jun; 32(3):424-40. PubMed ID: 19387866 [Abstract] [Full Text] [Related]
7. Effects of a chemical chaperone on genetic mutations in alpha-galactosidase A in Korean patients with Fabry disease. Park JY, Kim GH, Kim SS, Ko JM, Lee JJ, Yoo HW. Exp Mol Med; 2009 Jan 31; 41(1):1-7. PubMed ID: 19287194 [Abstract] [Full Text] [Related]
15. The validation of pharmacogenetics for the identification of Fabry patients to be treated with migalastat. Benjamin ER, Della Valle MC, Wu X, Katz E, Pruthi F, Bond S, Bronfin B, Williams H, Yu J, Bichet DG, Germain DP, Giugliani R, Hughes D, Schiffmann R, Wilcox WR, Desnick RJ, Kirk J, Barth J, Barlow C, Valenzano KJ, Castelli J, Lockhart DJ. Genet Med; 2017 Apr 01; 19(4):430-438. PubMed ID: 27657681 [Abstract] [Full Text] [Related]
16. The New Pharmacological Chaperones PBXs Increase α-Galactosidase A Activity in Fabry Disease Cellular Models. Besada P, Gallardo-Gómez M, Pérez-Márquez T, Patiño-Álvarez L, Pantano S, Silva-López C, Terán C, Arévalo-Gómez A, Ruz-Zafra A, Fernández-Martín J, Ortolano S. Biomolecules; 2021 Dec 10; 11(12):. PubMed ID: 34944500 [Abstract] [Full Text] [Related]
17. Functional characterisation of alpha-galactosidase a mutations as a basis for a new classification system in fabry disease. Lukas J, Giese AK, Markoff A, Grittner U, Kolodny E, Mascher H, Lackner KJ, Meyer W, Wree P, Saviouk V, Rolfs A. PLoS Genet; 2013 Dec 10; 9(8):e1003632. PubMed ID: 23935525 [Abstract] [Full Text] [Related]
18. The Large Phenotypic Spectrum of Fabry Disease Requires Graduated Diagnosis and Personalized Therapy: A Meta-Analysis Can Help to Differentiate Missense Mutations. Citro V, Cammisa M, Liguori L, Cimmaruta C, Lukas J, Cubellis MV, Andreotti G. Int J Mol Sci; 2016 Dec 01; 17(12):. PubMed ID: 27916943 [Abstract] [Full Text] [Related]
19. Mutation-specific Fabry disease patient-derived cell model to evaluate the amenability to chaperone therapy. Lenders M, Stappers F, Niemietz C, Schmitz B, Boutin M, Ballmaier PJ, Zibert A, Schmidt H, Brand SM, Auray-Blais C, Brand E. J Med Genet; 2019 Aug 01; 56(8):548-556. PubMed ID: 31010832 [Abstract] [Full Text] [Related]
20. A pharmacogenetic approach to identify mutant forms of α-galactosidase A that respond to a pharmacological chaperone for Fabry disease. Wu X, Katz E, Della Valle MC, Mascioli K, Flanagan JJ, Castelli JP, Schiffmann R, Boudes P, Lockhart DJ, Valenzano KJ, Benjamin ER. Hum Mutat; 2011 Aug 01; 32(8):965-77. PubMed ID: 21598360 [Abstract] [Full Text] [Related] Page: [Next] [New Search]