These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
418 related items for PubMed ID: 32033946
1. Performance of a Geosynthetic-Clay-Liner Cover System at a Cu/Zn Mine Tailings Impoundment. Pakostova E, Schmall AJ, Holland SP, White H, Ptacek CJ, Blowes DW. Appl Environ Microbiol; 2020 Apr 01; 86(8):. PubMed ID: 32033946 [Abstract] [Full Text] [Related]
2. Novel Microbial Assemblages Dominate Weathered Sulfide-Bearing Rock from Copper-Nickel Deposits in the Duluth Complex, Minnesota, USA. Jones DS, Lapakko KA, Wenz ZJ, Olson MC, Roepke EW, Sadowsky MJ, Novak PJ, Bailey JV. Appl Environ Microbiol; 2017 Aug 15; 83(16):. PubMed ID: 28600313 [Abstract] [Full Text] [Related]
3. Legacy copper/nickel mine tailings potentially harbor novel iron/sulfur cycling microorganisms within highly variable communities. Chen M, Grégoire DS, Bain JG, Blowes DW, Hug LA. Appl Environ Microbiol; 2024 Jun 18; 90(6):e0014324. PubMed ID: 38814057 [Abstract] [Full Text] [Related]
4. Microbiology of a multi-layer biosolid/desulfurized tailings cover on a mill tailings impoundment. Pakostova E, McAlary M, Marshall S, McGarry S, Ptacek CJ, Blowes DW. J Environ Manage; 2022 Jan 15; 302(Pt A):114030. PubMed ID: 34749079 [Abstract] [Full Text] [Related]
5. Significance of microbial communities and interactions in safeguarding reactive mine tailings by ecological engineering. Nancucheo I, Johnson DB. Appl Environ Microbiol; 2011 Dec 15; 77(23):8201-8. PubMed ID: 21965397 [Abstract] [Full Text] [Related]
6. Microbial communities in a porphyry copper tailings impoundment and their impact on the geochemical dynamics of the mine waste. Diaby N, Dold B, Pfeifer HR, Holliger C, Johnson DB, Hallberg KB. Environ Microbiol; 2007 Feb 15; 9(2):298-307. PubMed ID: 17222129 [Abstract] [Full Text] [Related]
7. Functions and Unique Diversity of Genes and Microorganisms Involved in Arsenite Oxidation from the Tailings of a Realgar Mine. Zeng XC, E G, Wang J, Wang N, Chen X, Mu Y, Li H, Yang Y, Liu Y, Wang Y. Appl Environ Microbiol; 2016 Dec 15; 82(24):7019-7029. PubMed ID: 27663031 [Abstract] [Full Text] [Related]
8. Reactive transport modelling of tailings hydrogeochemistry under a composite cover. Zhang A, Wilson D, Ptacek CJ, Blowes DW. J Contam Hydrol; 2024 Feb 15; 261():104290. PubMed ID: 38176293 [Abstract] [Full Text] [Related]
9. Metal mobilization by iron- and sulfur-oxidizing bacteria in a multiple extreme mine tailings in the Atacama Desert, Chile. Korehi H, Blöthe M, Sitnikova MA, Dold B, Schippers A. Environ Sci Technol; 2013 Mar 05; 47(5):2189-96. PubMed ID: 23373853 [Abstract] [Full Text] [Related]
10. Vegetation successfully prevents oxidization of sulfide minerals in mine tailings. Li Y, Sun Q, Zhan J, Yang Y, Wang D. J Environ Manage; 2016 Jul 15; 177():153-60. PubMed ID: 27093236 [Abstract] [Full Text] [Related]
11. Temporal evolution of bacterial communities associated with the in situ wetland-based remediation of a marine shore porphyry copper tailings deposit. Diaby N, Dold B, Rohrbach E, Holliger C, Rossi P. Sci Total Environ; 2015 Nov 15; 533():110-21. PubMed ID: 26151655 [Abstract] [Full Text] [Related]
12. Alternative waste residue materials for passive in situ prevention of sulfide-mine tailings oxidation: a field evaluation. Nason P, Johnson RH, Neuschütz C, Alakangas L, Öhlander B. J Hazard Mater; 2014 Feb 28; 267():245-54. PubMed ID: 24462894 [Abstract] [Full Text] [Related]
13. Elemental mobility in sulfidic mine tailings reclaimed with paper mill by-products as sealing materials. Jia Y, Stahre N, Mäkitalo M, Maurice C, Öhlander B. Environ Sci Pollut Res Int; 2017 Sep 28; 24(25):20372-20389. PubMed ID: 28707240 [Abstract] [Full Text] [Related]
14. Current approaches for mitigating acid mine drainage. Sahoo PK, Kim K, Equeenuddin SM, Powell MA. Rev Environ Contam Toxicol; 2013 Sep 28; 226():1-32. PubMed ID: 23625128 [Abstract] [Full Text] [Related]
15. Metagenome-Assembled Genomes of Novel Taxa from an Acid Mine Drainage Environment. Grettenberger CL, Hamilton TL. Appl Environ Microbiol; 2021 Aug 11; 87(17):e0077221. PubMed ID: 34161177 [Abstract] [Full Text] [Related]
16. Geochemical and mineralogical characterization of a neutral, low-sulfide/high-carbonate tailings impoundment, Markušovce, eastern Slovakia. Hiller E, Petrák M, Tóth R, Lalinská-Voleková B, Jurkovič L, Kučerová G, Radková A, Sottník P, Vozár J. Environ Sci Pollut Res Int; 2013 Nov 11; 20(11):7627-42. PubMed ID: 23436124 [Abstract] [Full Text] [Related]
17. Microbial processes with the potential to mobilize As from a circumneutral-pH mixture of flotation and roaster tailings. Pakostova E, Hilger DM, Blowes DW, Ptacek CJ. Sci Rep; 2023 Dec 27; 13(1):23048. PubMed ID: 38155250 [Abstract] [Full Text] [Related]
18. Microbial communities in uranium mine tailings and mine water sediment from Jaduguda U mine, India: A culture independent analysis. Dhal PK, Sar P. J Environ Sci Health A Tox Hazard Subst Environ Eng; 2014 Dec 27; 49(6):694-709. PubMed ID: 24521415 [Abstract] [Full Text] [Related]
19. Comparative performance of cover systems to prevent acid mine drainage from pre-oxidized tailings: A numerical hydro-geochemical assessment. Pabst T, Bussière B, Aubertin M, Molson J. J Contam Hydrol; 2018 Jul 27; 214():39-53. PubMed ID: 29861334 [Abstract] [Full Text] [Related]
20. Treatment impacts on temporal microbial community dynamics during phytostabilization of acid-generating mine tailings in semiarid regions. Valentín-Vargas A, Neilson JW, Root RA, Chorover J, Maier RM. Sci Total Environ; 2018 Mar 15; 618():357-368. PubMed ID: 29132003 [Abstract] [Full Text] [Related] Page: [Next] [New Search]