These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Production and characterization of rhamnolipid biosurfactant from waste frying coconut oil using a novel Pseudomonas aeruginosa D. George S, Jayachandran K. J Appl Microbiol; 2013 Feb; 114(2):373-83. PubMed ID: 23164038 [Abstract] [Full Text] [Related]
5. Microbial synthesis of rhamnolipids by Pseudomonas aeruginosa (ATCC 10145) on waste frying oil as low cost carbon source. Wadekar SD, Kale SB, Lali AM, Bhowmick DN, Pratap AP. Prep Biochem Biotechnol; 2012 Feb; 42(3):249-66. PubMed ID: 22509850 [Abstract] [Full Text] [Related]
6. Optimization of environmental factors for improved production of rhamnolipid biosurfactant by Pseudomonas aeruginosa RS29 on glycerol. Saikia RR, Deka S, Deka M, Sarma H. J Basic Microbiol; 2012 Aug; 52(4):446-57. PubMed ID: 22144225 [Abstract] [Full Text] [Related]
7. Screening and production of rhamnolipids by Pseudomonas aeruginosa 47T2 NCIB 40044 from waste frying oils. Haba E, Espuny MJ, Busquets M, Manresa A. J Appl Microbiol; 2000 Mar; 88(3):379-87. PubMed ID: 10747218 [Abstract] [Full Text] [Related]
8. Production and physico-chemical characterization of a biosurfactant produced by Pseudomonas aeruginosa OBP1 isolated from petroleum sludge. Bharali P, Konwar BK. Appl Biochem Biotechnol; 2011 Aug; 164(8):1444-60. PubMed ID: 21468636 [Abstract] [Full Text] [Related]
9. Synthesis, characterization, and oil recovery application of biosurfactant produced by indigenous pseudomonas aeruginosa WJ-1 using waste vegetable oils. Xia WJ, Luo ZB, Dong HP, Yu L, Cui QF, Bi YQ. Appl Biochem Biotechnol; 2012 Mar; 166(5):1148-66. PubMed ID: 22198867 [Abstract] [Full Text] [Related]
14. Management of soybean oil refinery wastes through recycling them for producing biosurfactant using Pseudomonas aeruginosa MR01. Partovi M, Lotfabad TB, Roostaazad R, Bahmaei M, Tayyebi S. World J Microbiol Biotechnol; 2013 Jun; 29(6):1039-47. PubMed ID: 23361970 [Abstract] [Full Text] [Related]
15. Biosurfactant production from novel air isolate NITT6L: screening, characterization and optimization of media. Vanavil B, Perumalsamy M, Rao AS. J Microbiol Biotechnol; 2013 Sep 28; 23(9):1229-43. PubMed ID: 23851275 [Abstract] [Full Text] [Related]
17. Rhamnolipid production by pseudomonas aeruginosa GIM 32 using different substrates including molasses distillery wastewater. Li AH, Xu MY, Sun W, Sun GP. Appl Biochem Biotechnol; 2011 Mar 28; 163(5):600-11. PubMed ID: 20830582 [Abstract] [Full Text] [Related]
18. Utilization of mango kernel oil for the rhamnolipid production by Pseudomonas aeruginosa DR1 towards its application as biocontrol agent. Sathi Reddy K, Yahya Khan M, Archana K, Gopal Reddy M, Hameeda B. Bioresour Technol; 2016 Dec 28; 221():291-299. PubMed ID: 27643738 [Abstract] [Full Text] [Related]
19. Surface-active properties of rhamnolipids from Pseudomonas aeruginosa GS3. Patel RM, Desai AJ. J Basic Microbiol; 1997 Dec 28; 37(4):281-6. PubMed ID: 9323868 [Abstract] [Full Text] [Related]
20. Biodegradation of waste cooking oil and simultaneous production of rhamnolipid biosurfactant by Pseudomonas aeruginosa P7815 in batch and fed-batch bioreactor. Sharma S, Verma R, Dhull S, Maiti SK, Pandey LM. Bioprocess Biosyst Eng; 2022 Feb 28; 45(2):309-319. PubMed ID: 34767073 [Abstract] [Full Text] [Related] Page: [Next] [New Search]