These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


174 related items for PubMed ID: 32037281

  • 21. Assessment of jawbone trabecular bone structure amongst osteoporotic women by cone-beam computed tomography: the OSTEOSYR project.
    Barngkgei I, Al Haffar I, Shaarani E, Khattab R, Mashlah A.
    J Investig Clin Dent; 2016 Nov; 7(4):332-340. PubMed ID: 26097193
    [Abstract] [Full Text] [Related]

  • 22. [Sensing volume of tissue dielectric property measurement with open-ended coaxial probe].
    Liu Y, Huang Y, Xin X, Yu X.
    Nan Fang Yi Ke Da Xue Xue Bao; 2020 Jul 30; 40(7):1036-1043. PubMed ID: 32895168
    [Abstract] [Full Text] [Related]

  • 23. Comparison of synchrotron radiation and conventional x-ray microcomputed tomography for assessing trabecular bone microarchitecture of human femoral heads.
    Chappard C, Basillais A, Benhamou L, Bonassie A, Brunet-Imbault B, Bonnet N, Peyrin F.
    Med Phys; 2006 Sep 30; 33(9):3568-77. PubMed ID: 17022253
    [Abstract] [Full Text] [Related]

  • 24. Prediction of mechanical properties of human trabecular bone by electrical measurements.
    Sierpowska J, Hakulinen MA, Töyräs J, Day JS, Weinans H, Jurvelin JS, Lappalainen R.
    Physiol Meas; 2005 Apr 30; 26(2):S119-31. PubMed ID: 15798225
    [Abstract] [Full Text] [Related]

  • 25. Dielectric properties of muscle and liver from 500 MHz-40 GHz.
    Abdilla L, Sammut C, Mangion LZ.
    Electromagn Biol Med; 2013 Jun 30; 32(2):244-52. PubMed ID: 23675628
    [Abstract] [Full Text] [Related]

  • 26. A Transmission-Based Dielectric Property Probe for Clinical Applications.
    Meaney P, Rydholm T, Brisby H.
    Sensors (Basel); 2018 Oct 16; 18(10):. PubMed ID: 30332809
    [Abstract] [Full Text] [Related]

  • 27. The UHF and microwave dielectric properties of normal and tumour tissues: variation in dielectric properties with tissue water content.
    Schepps JL, Foster KR.
    Phys Med Biol; 1980 Nov 16; 25(6):1149-59. PubMed ID: 7208627
    [Abstract] [Full Text] [Related]

  • 28.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 29. Is there any information on micro-structure in microwave tomography of bone tissue?
    Irastorza RM, Carlevaro CM, Vericat F.
    Med Eng Phys; 2013 Aug 16; 35(8):1173-80. PubMed ID: 23352612
    [Abstract] [Full Text] [Related]

  • 30. Effects of salmon calcitonin on trabecular microarchitecture as determined by magnetic resonance imaging: results from the QUEST study.
    Chesnut CH, Majumdar S, Newitt DC, Shields A, Van Pelt J, Laschansky E, Azria M, Kriegman A, Olson M, Eriksen EF, Mindeholm L.
    J Bone Miner Res; 2005 Sep 16; 20(9):1548-61. PubMed ID: 16059627
    [Abstract] [Full Text] [Related]

  • 31. A large-scale study of the ultrawideband microwave dielectric properties of normal breast tissue obtained from reduction surgeries.
    Lazebnik M, McCartney L, Popovic D, Watkins CB, Lindstrom MJ, Harter J, Sewall S, Magliocco A, Booske JH, Okoniewski M, Hagness SC.
    Phys Med Biol; 2007 May 21; 52(10):2637-56. PubMed ID: 17473342
    [Abstract] [Full Text] [Related]

  • 32. Dielectric Permittivity Measurement Using Open-Ended Coaxial Probe-Modeling and Simulation Based on the Simple Capacitive-Load Model.
    Šarolić A, Matković A.
    Sensors (Basel); 2022 Aug 12; 22(16):. PubMed ID: 36015790
    [Abstract] [Full Text] [Related]

  • 33. Correlative Analysis of Vertebral Trabecular Bone Microarchitecture and Mechanical Properties: A Combined Ultra-high Field (7 Tesla) MRI and Biomechanical Investigation.
    Guenoun D, Fouré A, Pithioux M, Guis S, Le Corroller T, Mattei JP, Pauly V, Guye M, Bernard M, Chabrand P, Champsaur P, Bendahan D.
    Spine (Phila Pa 1976); 2017 Oct 15; 42(20):E1165-E1172. PubMed ID: 28338579
    [Abstract] [Full Text] [Related]

  • 34. Osteoarthritic versus osteoporotic bone and intra-skeletal variations in normal bone: evaluation with µCT and bone histomorphometry.
    Zupan J, van't Hof RJ, Vindišar F, Haring G, Trebše R, Komadina R, Marc J.
    J Orthop Res; 2013 Jul 15; 31(7):1059-66. PubMed ID: 23362137
    [Abstract] [Full Text] [Related]

  • 35. A quick accurate method for measuring the microwave dielectric properties of small tissue samples.
    Land DV, Campbell AM.
    Phys Med Biol; 1992 Jan 15; 37(1):183-92. PubMed ID: 1741423
    [Abstract] [Full Text] [Related]

  • 36. Microwave Bone Imaging: A Preliminary Investigation on Numerical Bone Phantoms for Bone Health Monitoring.
    Amin B, Shahzad A, O'Halloran M, Elahi MA.
    Sensors (Basel); 2020 Nov 05; 20(21):. PubMed ID: 33167562
    [Abstract] [Full Text] [Related]

  • 37.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 38. Dielectric properties for non-invasive detection of normal, benign, and malignant breast tissues using microwave theories.
    Cheng Y, Fu M.
    Thorac Cancer; 2018 Apr 05; 9(4):459-465. PubMed ID: 29465782
    [Abstract] [Full Text] [Related]

  • 39. Ultra-Wideband Temperature Dependent Dielectric Spectroscopy of Porcine Tissue and Blood in the Microwave Frequency Range.
    Ley S, Schilling S, Fiser O, Vrba J, Sachs J, Helbig M.
    Sensors (Basel); 2019 Apr 10; 19(7):. PubMed ID: 30974770
    [Abstract] [Full Text] [Related]

  • 40. A review of the dielectric properties of the bone for low frequency medical technologies.
    Amin B, Elahi MA, Shahzad A, Porter E, O'Halloran M.
    Biomed Phys Eng Express; 2019 Jan 07; 5(2):. PubMed ID: 34247151
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 9.