These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
257 related items for PubMed ID: 32040514
1. Fully automatic segmentation of glottis and vocal folds in endoscopic laryngeal high-speed videos using a deep Convolutional LSTM Network. Fehling MK, Grosch F, Schuster ME, Schick B, Lohscheller J. PLoS One; 2020; 15(2):e0227791. PubMed ID: 32040514 [Abstract] [Full Text] [Related]
2. A Deep Learning Approach for Quantifying Vocal Fold Dynamics During Connected Speech Using Laryngeal High-Speed Videoendoscopy. Yousef AM, Deliyski DD, Zacharias SRC, de Alarcon A, Orlikoff RF, Naghibolhosseini M. J Speech Lang Hear Res; 2022 Jun 08; 65(6):2098-2113. PubMed ID: 35605603 [Abstract] [Full Text] [Related]
3. Detection of Vocal Fold Image Obstructions in High-Speed Videoendoscopy During Connected Speech in Adductor Spasmodic Dysphonia: A Convolutional Neural Networks Approach. Yousef AM, Deliyski DD, Zacharias SRC, Naghibolhosseini M. J Voice; 2024 Jul 08; 38(4):951-962. PubMed ID: 35304042 [Abstract] [Full Text] [Related]
4. Localization and quantification of glottal gaps on deep learning segmentation of vocal folds. Pedersen M, Larsen CF, Madsen B, Eeg M. Sci Rep; 2023 Jan 17; 13(1):878. PubMed ID: 36650265 [Abstract] [Full Text] [Related]
5. Automatic and quantitative measurement of laryngeal video stroboscopic images. Kuo CJ, Kuo J, Hsiao SW, Lee CL, Lee JC, Ke BH. Proc Inst Mech Eng H; 2017 Jan 17; 231(1):48-57. PubMed ID: 28097934 [Abstract] [Full Text] [Related]
6. Spatial Segmentation for Laryngeal High-Speed Videoendoscopy in Connected Speech. Yousef AM, Deliyski DD, Zacharias SRC, de Alarcon A, Orlikoff RF, Naghibolhosseini M. J Voice; 2023 Jan 17; 37(1):26-36. PubMed ID: 33257208 [Abstract] [Full Text] [Related]
7. Intersegmenter Variability in High-Speed Laryngoscopy-Based Glottal Area Waveform Measures. Maryn Y, Verguts M, Demarsin H, van Dinther J, Gomez P, Schlegel P, Döllinger M. Laryngoscope; 2020 Nov 17; 130(11):E654-E661. PubMed ID: 31840827 [Abstract] [Full Text] [Related]
8. A Deep Learning Enhanced Novel Software Tool for Laryngeal Dynamics Analysis. Kist AM, Gómez P, Dubrovskiy D, Schlegel P, Kunduk M, Echternach M, Patel R, Semmler M, Bohr C, Dürr S, Schützenberger A, Döllinger M. J Speech Lang Hear Res; 2021 Jun 04; 64(6):1889-1903. PubMed ID: 34000199 [Abstract] [Full Text] [Related]
9. OpenHSV: an open platform for laryngeal high-speed videoendoscopy. Kist AM, Dürr S, Schützenberger A, Döllinger M. Sci Rep; 2021 Jul 02; 11(1):13760. PubMed ID: 34215788 [Abstract] [Full Text] [Related]
10. Laryngeal High-Speed Videoendoscopy with Laser Illumination: A Preliminary Report. Malinowski J, Niebudek-Bogusz E, Just M, Morawska J, Racino A, Hoffman J, Barańska M, Kowalczyk MM, Pietruszewska W. Otolaryngol Pol; 2021 Sep 07; 75(6):1-10. PubMed ID: 35175220 [Abstract] [Full Text] [Related]
11. BAGLS, a multihospital Benchmark for Automatic Glottis Segmentation. Gómez P, Kist AM, Schlegel P, Berry DA, Chhetri DK, Dürr S, Echternach M, Johnson AM, Kniesburges S, Kunduk M, Maryn Y, Schützenberger A, Verguts M, Döllinger M. Sci Data; 2020 Jun 19; 7(1):186. PubMed ID: 32561845 [Abstract] [Full Text] [Related]
18. A generalized procedure for analyzing sustained and dynamic vocal fold vibrations from laryngeal high-speed videos using phonovibrograms. Unger J, Schuster M, Hecker DJ, Schick B, Lohscheller J. Artif Intell Med; 2016 Jan 19; 66():15-28. PubMed ID: 26597002 [Abstract] [Full Text] [Related]
19. A single latent channel is sufficient for biomedical glottis segmentation. Kist AM, Breininger K, Dörrich M, Dürr S, Schützenberger A, Semmler M. Sci Rep; 2022 Aug 22; 12(1):14292. PubMed ID: 35995933 [Abstract] [Full Text] [Related]