These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
368 related items for PubMed ID: 32041524
1. Genome-wide association study (GWAS) reveals genetic loci of lead (Pb) tolerance during seedling establishment in rapeseed (Brassica napus L.). Zhang F, Xiao X, Xu K, Cheng X, Xie T, Hu J, Wu X. BMC Genomics; 2020 Feb 10; 21(1):139. PubMed ID: 32041524 [Abstract] [Full Text] [Related]
2. Identification of genetic variation for salt tolerance in Brassica napus using genome-wide association mapping. Wassan GM, Khanzada H, Zhou Q, Mason AS, Keerio AA, Khanzada S, Solangi AM, Faheem M, Fu D, He H. Mol Genet Genomics; 2021 Mar 10; 296(2):391-408. PubMed ID: 33464396 [Abstract] [Full Text] [Related]
3. Physiological and molecular mechanism of cadmium (Cd) tolerance at initial growth stage in rapeseed (Brassica napus L.). Zhang F, Xiao X, Wu X. Ecotoxicol Environ Saf; 2020 Jul 01; 197():110613. PubMed ID: 32304923 [Abstract] [Full Text] [Related]
4. Genome-Wide Association Study Reveals the Genetic Architecture Underlying Salt Tolerance-Related Traits in Rapeseed (Brassica napus L.). Wan H, Chen L, Guo J, Li Q, Wen J, Yi B, Ma C, Tu J, Fu T, Shen J. Front Plant Sci; 2017 Jul 01; 8():593. PubMed ID: 28491067 [Abstract] [Full Text] [Related]
5. Identification of a gene controlling variation in the salt tolerance of rapeseed (Brassica napus L.). Yong HY, Wang C, Bancroft I, Li F, Wu X, Kitashiba H, Nishio T. Planta; 2015 Jul 01; 242(1):313-26. PubMed ID: 25921693 [Abstract] [Full Text] [Related]
6. A genome-wide association study of plant height and primary branch number in rapeseed (Brassica napus). Li F, Chen B, Xu K, Gao G, Yan G, Qiao J, Li J, Li H, Li L, Xiao X, Zhang T, Nishio T, Wu X. Plant Sci; 2016 Jan 01; 242():169-177. PubMed ID: 26566834 [Abstract] [Full Text] [Related]
7. Annotation and characterization of Cd-responsive metal transporter genes in rapeseed (Brassica napus). Zhang XD, Meng JG, Zhao KX, Chen X, Yang ZM. Biometals; 2018 Feb 01; 31(1):107-121. PubMed ID: 29250721 [Abstract] [Full Text] [Related]
8. Integration of GWAS and transcriptome analyses to identify SNPs and candidate genes for aluminum tolerance in rapeseed (Brassica napus L.). Zhou H, Xiao X, Asjad A, Han D, Zheng W, Xiao G, Huang Y, Zhou Q. BMC Plant Biol; 2022 Mar 21; 22(1):130. PubMed ID: 35313826 [Abstract] [Full Text] [Related]
9. Shovelomics for phenotyping root architectural traits of rapeseed/canola (Brassica napus L.) and genome-wide association mapping. Arifuzzaman M, Oladzadabbasabadi A, McClean P, Rahman M. Mol Genet Genomics; 2019 Aug 21; 294(4):985-1000. PubMed ID: 30968249 [Abstract] [Full Text] [Related]
10. Genome-wide association study reveals the genetic architecture of flowering time in rapeseed (Brassica napus L.). Xu L, Hu K, Zhang Z, Guan C, Chen S, Hua W, Li J, Wen J, Yi B, Shen J, Ma C, Tu J, Fu T. DNA Res; 2016 Feb 21; 23(1):43-52. PubMed ID: 26659471 [Abstract] [Full Text] [Related]
11. SNP markers-based map construction and genome-wide linkage analysis in Brassica napus. Raman H, Dalton-Morgan J, Diffey S, Raman R, Alamery S, Edwards D, Batley J. Plant Biotechnol J; 2014 Sep 21; 12(7):851-60. PubMed ID: 24698362 [Abstract] [Full Text] [Related]
12. Identification candidate genes for salt resistance through quantitative trait loci-sequencing in Brassica napus L. Zhang Y, Guo Z, Chen X, Li X, Shi Y, Xu L, Yu C, Jing B, Li W, Xu A, Shi X, Li K, Huang Z. J Plant Physiol; 2024 Mar 21; 294():154187. PubMed ID: 38422630 [Abstract] [Full Text] [Related]
13. Quantitative trait loci that control the oil content variation of rapeseed (Brassica napus L.). Jiang C, Shi J, Li R, Long Y, Wang H, Li D, Zhao J, Meng J. Theor Appl Genet; 2014 Apr 21; 127(4):957-68. PubMed ID: 24504552 [Abstract] [Full Text] [Related]
14. Root system architecture change in response to waterlogging stress in a 448 global collection of rapeseeds (Brassica napus L.). Ullah N, Qian F, Geng R, Xue Y, Guan W, Ji G, Li H, Huang Q, Cai G, Yan G, Wu X. Planta; 2024 Mar 21; 259(5):95. PubMed ID: 38512412 [Abstract] [Full Text] [Related]
15. EDTA ameliorates phytoextraction of lead and plant growth by reducing morphological and biochemical injuries in Brassica napus L. under lead stress. Kanwal U, Ali S, Shakoor MB, Farid M, Hussain S, Yasmeen T, Adrees M, Bharwana SA, Abbas F. Environ Sci Pollut Res Int; 2014 Mar 21; 21(16):9899-910. PubMed ID: 24854501 [Abstract] [Full Text] [Related]
16. Genetic dissection of the mechanism of flowering time based on an environmentally stable and specific QTL in Brassica napus. Li B, Zhao W, Li D, Chao H, Zhao X, Ta N, Li Y, Guan Z, Guo L, Zhang L, Li S, Wang H, Li M. Plant Sci; 2018 Dec 21; 277():296-310. PubMed ID: 30466595 [Abstract] [Full Text] [Related]
18. Genome-wide association study and protein network analysis for understanding candidate genes involved in root development at the rapeseed seedling stage. He Y, Hu D, You J, Wu D, Cui Y, Dong H, Li J, Qian W. Plant Physiol Biochem; 2019 Apr 21; 137():42-52. PubMed ID: 30738216 [Abstract] [Full Text] [Related]
20. Genome-Wide Association Mapping Unravels the Genetic Control of Seed Vigor under Low-Temperature Conditions in Rapeseed (Brassica napus L.). Luo T, Zhang Y, Zhang C, Nelson MN, Yuan J, Guo L, Xu Z. Plants (Basel); 2021 Feb 24; 10(3):. PubMed ID: 33668258 [Abstract] [Full Text] [Related] Page: [Next] [New Search]