These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
208 related items for PubMed ID: 32050194
41. A Chair-Based Unobtrusive Cuffless Blood Pressure Monitoring System Based on Pulse Arrival Time. Tang Z, Tamura T, Sekine M, Huang M, Chen W, Yoshida M, Sakatani K, Kobayashi H, Kanaya S. IEEE J Biomed Health Inform; 2017 Sep; 21(5):1194-1205. PubMed ID: 28113527 [Abstract] [Full Text] [Related]
42. Contactless Blood Pressure Measurement Via Remote Photoplethysmography With Synthetic Data Generation Using Generative Adversarial Networks. Wu BF, Chiu LW, Wu YC, Lai CC, Cheng HM, Chu PH. IEEE J Biomed Health Inform; 2024 Feb; 28(2):621-632. PubMed ID: 37037253 [Abstract] [Full Text] [Related]
43. Deep-learning-based blood pressure estimation using multi channel photoplethysmogram and finger pressure with attention mechanism. Kyung J, Yang JY, Choi JH, Chang JH, Bae S, Choi J, Kim Y. Sci Rep; 2023 Jun 08; 13(1):9311. PubMed ID: 37291140 [Abstract] [Full Text] [Related]
44. A Data-Driven Model with Feedback Calibration Embedded Blood Pressure Estimator Using Reflective Photoplethysmography. Chen JW, Huang HK, Fang YT, Lin YT, Li SZ, Chen BW, Lo YC, Chen PC, Wang CF, Chen YY. Sensors (Basel); 2022 Feb 27; 22(5):. PubMed ID: 35271020 [Abstract] [Full Text] [Related]
45. Effects of different contacting pressure on the transfer function between finger photoplethysmographic and radial blood pressure waveforms. Hsiu H, Hsu CL, Wu TL. Proc Inst Mech Eng H; 2011 Jun 27; 225(6):575-83. PubMed ID: 22034741 [Abstract] [Full Text] [Related]
46. Non-invasive estimate of blood glucose and blood pressure from a photoplethysmograph by means of machine learning techniques. Monte-Moreno E. Artif Intell Med; 2011 Oct 27; 53(2):127-38. PubMed ID: 21696930 [Abstract] [Full Text] [Related]
47. Beat-to-Beat Blood Pressure Estimation by Photoplethysmography and Its Interpretation. Fleischhauer V, Feldheiser A, Zaunseder S. Sensors (Basel); 2022 Sep 17; 22(18):. PubMed ID: 36146386 [Abstract] [Full Text] [Related]
48. Enhancing the estimation of blood pressure using pulse arrival time and two confounding factors. Baek HJ, Kim KK, Kim JS, Lee B, Park KS. Physiol Meas; 2010 Feb 17; 31(2):145-57. PubMed ID: 20009186 [Abstract] [Full Text] [Related]
49. Robust Feature Selection for BP Estimation in Multiple Populations: Towards Cuffless Ambulatory BP Monitoring. Cisnal A, Li Y, Fuchs B, Ejtehadi M, Riener R, Paez-Granados D. IEEE J Biomed Health Inform; 2024 Oct 17; 28(10):5768-5779. PubMed ID: 38857137 [Abstract] [Full Text] [Related]
50. Novel blood pressure estimation method using single photoplethysmography feature. Yang Chen, Shuo Cheng, Tong Wang, Ting Ma. Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul 17; 2017():1712-1715. PubMed ID: 29060216 [Abstract] [Full Text] [Related]
51. Photoplethysmography Based Blood Pressure Monitoring Using the Senbiosys Ring. Haddad S, Boukhayma A, Di Pietrantonio G, Barison A, de Preux G, Caizzone A. Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov 17; 2021():1609-1612. PubMed ID: 34891593 [Abstract] [Full Text] [Related]
52. Cuff-less blood pressure estimation from photoplethysmography signal and electrocardiogram. Yao LP, Pan ZL. Phys Eng Sci Med; 2021 Jun 17; 44(2):397-408. PubMed ID: 33738778 [Abstract] [Full Text] [Related]
53. Cuffless Estimation of Blood Pressure: Importance of Variability in Blood Pressure Dependence of Arterial Stiffness Across Individuals and Measurement Sites. Butlin M, Shirbani F, Barin E, Tan I, Spronck B, Avolio AP. IEEE Trans Biomed Eng; 2018 Nov 17; 65(11):2377-2383. PubMed ID: 29993392 [Abstract] [Full Text] [Related]
54. A Revised Point-to-Point Calibration Approach with Adaptive Errors Correction to Weaken Initial Sensitivity of Cuff-Less Blood Pressure Estimation. Shao J, Shi P, Hu S, Yu H. Sensors (Basel); 2020 Apr 13; 20(8):. PubMed ID: 32295090 [Abstract] [Full Text] [Related]
55. Estimation of Arterial Blood Pressure Based on Artificial Intelligence Using Single Earlobe Photoplethysmography during Cardiopulmonary Resuscitation. Park JU, Kang DW, Erdenebayar U, Kim YJ, Cha KC, Lee KJ. J Med Syst; 2019 Dec 10; 44(1):18. PubMed ID: 31823091 [Abstract] [Full Text] [Related]
56. Photoplethysmography Signal Wavelet Enhancement and Novel Features Selection for Non-Invasive Cuff-Less Blood Pressure Monitoring. Attivissimo F, De Palma L, Di Nisio A, Scarpetta M, Lanzolla AML. Sensors (Basel); 2023 Feb 19; 23(4):. PubMed ID: 36850919 [Abstract] [Full Text] [Related]
58. Features Extraction for Cuffless Blood Pressure Estimation by Autoencoder from Photoplethysmography. Shimazaki S, Bhuiyan S, Kawanaka H, Oguri K. Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul 19; 2018():2857-2860. PubMed ID: 30440997 [Abstract] [Full Text] [Related]
59. Continuous non-invasive determination of nocturnal blood pressure variation using photoplethysmographic pulse wave signals: comparison of pulse propagation time, pulse transit time and RR-interval. Fischer C, Penzel T. Physiol Meas; 2019 Jan 11; 40(1):014001. PubMed ID: 30523856 [Abstract] [Full Text] [Related]
60. Arterial blood pressure feature estimation using photoplethysmography. Soltan Zadi A, Alex R, Zhang R, Watenpaugh DE, Behbehani K. Comput Biol Med; 2018 Nov 01; 102():104-111. PubMed ID: 30261404 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]