These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
484 related items for PubMed ID: 32053630
1. Plant tissue analysis as a tool for predicting fertiliser needs for low cyanogenic glucoside levels in cassava roots: An assessment of its possible use. Imakumbili MLE, Semu E, Semoka JMR, Abass A, Mkamilo G. PLoS One; 2020; 15(2):e0228641. PubMed ID: 32053630 [Abstract] [Full Text] [Related]
2. Soil nutrient adequacy for optimal cassava growth, implications on cyanogenic glucoside production: A case of konzo-affected Mtwara region, Tanzania. Imakumbili MLE, Semu E, Semoka JMR, Abass A, Mkamilo G. PLoS One; 2019; 14(5):e0216708. PubMed ID: 31083702 [Abstract] [Full Text] [Related]
3. Large-scale genome-wide association study, using historical data, identifies conserved genetic architecture of cyanogenic glucoside content in cassava (Manihot esculenta Crantz) root. Ogbonna AC, Braatz de Andrade LR, Rabbi IY, Mueller LA, Jorge de Oliveira E, Bauchet GJ. Plant J; 2021 Feb; 105(3):754-770. PubMed ID: 33164279 [Abstract] [Full Text] [Related]
4. Fate in humans of dietary intake of cyanogenic glycosides from roots of sweet cassava consumed in Cuba. Hernández T, Lundquist P, Oliveira L, Pérez Cristiá R, Rodriguez E, Rosling H. Nat Toxins; 1995 Feb; 3(2):114-7. PubMed ID: 7613736 [Abstract] [Full Text] [Related]
5. Farmers' perceptions on the causes of cassava root bitterness: A case of konzo-affected Mtwara region, Tanzania. Imakumbili MLE, Semu E, Semoka JMR, Abass A, Mkamilo G. PLoS One; 2019 Feb; 14(4):e0215527. PubMed ID: 30998724 [Abstract] [Full Text] [Related]
6. The retail market for fresh cassava root tubers in the European Union (EU): the case of Copenhagen, Denmark--a chemical food safety issue? Kolind-Hansen L, Brimer L. J Sci Food Agric; 2010 Jan 30; 90(2):252-6. PubMed ID: 20355039 [Abstract] [Full Text] [Related]
7. Effect of co-application of phosphorus fertilizer and in vitro-produced mycorrhizal fungal inoculants on yield and leaf nutrient concentration of cassava. Aliyu IA, Yusuf AA, Uyovbisere EO, Masso C, Sanders IR. PLoS One; 2019 Jan 30; 14(6):e0218969. PubMed ID: 31242274 [Abstract] [Full Text] [Related]
9. Managing cassava growth on nutrient poor soils under different water stress conditions. Imakumbili MLE, Semu E, Semoka JMR, Abass A, Mkamilo G. Heliyon; 2021 Jun 30; 7(6):e07331. PubMed ID: 34195433 [Abstract] [Full Text] [Related]
10. Cassava plants with a depleted cyanogenic glucoside content in leaves and tubers. Distribution of cyanogenic glucosides, their site of synthesis and transport, and blockage of the biosynthesis by RNA interference technology. Jørgensen K, Bak S, Busk PK, Sørensen C, Olsen CE, Puonti-Kaerlas J, Møller BL. Plant Physiol; 2005 Sep 30; 139(1):363-74. PubMed ID: 16126856 [Abstract] [Full Text] [Related]
11. Raman spectroscopic analysis of cyanogenic glucosides in plants: development of a flow injection surface-enhanced Raman scatter (FI-SERS) method for determination of cyanide. Thygesen LG, Jørgensen K, Møller BL, Engelsen SB. Appl Spectrosc; 2004 Feb 30; 58(2):212-7. PubMed ID: 15000716 [Abstract] [Full Text] [Related]
12. Phenolics, flavonoids, antioxidant activity and cyanogenic glycosides of organic and mineral-base fertilized cassava tubers. Omar NF, Hassan SA, Yusoff UK, Abdullah NA, Wahab PE, Sinniah U. Molecules; 2012 Feb 27; 17(3):2378-87. PubMed ID: 22370524 [Abstract] [Full Text] [Related]
13. Engineering cyanogen synthesis and turnover in cassava (Manihot esculenta). Siritunga D, Sayre R. Plant Mol Biol; 2004 Nov 27; 56(4):661-9. PubMed ID: 15630626 [Abstract] [Full Text] [Related]
14. Content and distribution of cyanogenic compounds in cassava roots and leaves in association with physiological age. Ospina MA, Tran T, Pizarro M, Luna J, Salazar S, Londoño L, Ceballos H, Becerra Lopez-Lavalle LA, Dufour D. J Sci Food Agric; 2024 Jun 27; 104(8):4851-4859. PubMed ID: 37961830 [Abstract] [Full Text] [Related]
15. In field damage of high and low cyanogenic cassava due to a generalist insect herbivore Cyrtomenus bergi (Hemiptera: Cydnidae). Riis L, Bellotti AC, Castaño O. J Econ Entomol; 2003 Dec 27; 96(6):1915-21. PubMed ID: 14977133 [Abstract] [Full Text] [Related]
16. Cyanogenic potential in cassava and its influence on a generalist insect herbivore Cyrtomenus bergi (Hemiptera: Cydnidae). Riis L, Bellotti AC, Bonierbale M, O'Brien GM. J Econ Entomol; 2003 Dec 27; 96(6):1905-14. PubMed ID: 14977132 [Abstract] [Full Text] [Related]
17. Variations in the chemical composition of cassava ( Manihot esculenta Crantz) leaves and roots as affected by genotypic and environmental variation. Burns AE, Gleadow RM, Zacarias AM, Cuambe CE, Miller RE, Cavagnaro TR. J Agric Food Chem; 2012 May 16; 60(19):4946-56. PubMed ID: 22515684 [Abstract] [Full Text] [Related]
18. The adverse effects of long-term cassava (Manihot esculenta Crantz) consumption. Kamalu BP. Int J Food Sci Nutr; 1995 Feb 16; 46(1):65-93. PubMed ID: 7712344 [Abstract] [Full Text] [Related]
19. Rapid analysis of hydrogen cyanide in fresh cassava roots using NIRSand machine learning algorithms: Meeting end user demand for low cyanogenic cassava. Kanaabi M, Namakula FB, Nuwamanya E, Kayondo IS, Muhumuza N, Wembabazi E, Iragaba P, Nandudu L, Nanyonjo AR, Baguma J, Esuma W, Ozimati A, Settumba M, Alicai T, Ibanda A, Kawuki RS. Plant Genome; 2024 Jun 16; 17(2):e20403. PubMed ID: 37938872 [Abstract] [Full Text] [Related]
20. Dietary exposure and risk assessment of cyanide via cassava consumption in Chinese population. Zhong Y, Xu T, Wu X, Li K, Zhang P, Ji S, Li S, Zheng L, Lu B. Food Chem; 2021 Aug 30; 354():129405. PubMed ID: 33770563 [Abstract] [Full Text] [Related] Page: [Next] [New Search]