These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


252 related items for PubMed ID: 32056734

  • 1. Ultrasensitive and regenerable nanopore sensing based on target induced aptamer dissociation.
    Zhang S, Chai H, Cheng K, Song L, Chen W, Yu L, Lu Z, Liu B, Zhao YD.
    Biosens Bioelectron; 2020 Mar 15; 152():112011. PubMed ID: 32056734
    [Abstract] [Full Text] [Related]

  • 2. Homogeneous and label-free electrochemiluminescence aptasensor based on the difference of electrostatic interaction and exonuclease-assisted target recycling amplification.
    Ni J, Yang W, Wang Q, Luo F, Guo L, Qiu B, Lin Z, Yang H.
    Biosens Bioelectron; 2018 May 15; 105():182-187. PubMed ID: 29412943
    [Abstract] [Full Text] [Related]

  • 3. Fabricated aptamer-based electrochemical "signal-off" sensor of ochratoxin A.
    Kuang H, Chen W, Xu D, Xu L, Zhu Y, Liu L, Chu H, Peng C, Xu C, Zhu S.
    Biosens Bioelectron; 2010 Oct 15; 26(2):710-6. PubMed ID: 20643539
    [Abstract] [Full Text] [Related]

  • 4. An aptamer-assisted biological nanopore biosensor for ultra-sensitive detection of ochratoxin A with a portable single-molecule measuring instrument.
    Li T, Su Z, Li Y, Xi L, Li G.
    Talanta; 2022 Oct 01; 248():123619. PubMed ID: 35671547
    [Abstract] [Full Text] [Related]

  • 5. Electrochemiluminescence biosensor for ultrasensitive determination of ochratoxin A in corn samples based on aptamer and hyperbranched rolling circle amplification.
    Yang L, Zhang Y, Li R, Lin C, Guo L, Qiu B, Lin Z, Chen G.
    Biosens Bioelectron; 2015 Aug 15; 70():268-74. PubMed ID: 25835519
    [Abstract] [Full Text] [Related]

  • 6. Simple Design Concept for Dual-Channel Detection of Ochratoxin A Based on Bifunctional Metal-Organic Framework.
    Li W, Zhang X, Hu X, Shi Y, Liang N, Huang X, Wang X, Shen T, Zou X, Shi J.
    ACS Appl Mater Interfaces; 2022 Feb 02; 14(4):5615-5623. PubMed ID: 35050582
    [Abstract] [Full Text] [Related]

  • 7. Homogeneous electrochemical detection of ochratoxin A in foodstuff using aptamer-graphene oxide nanosheets and DNase I-based target recycling reaction.
    Sun AL, Zhang YF, Sun GP, Wang XN, Tang D.
    Biosens Bioelectron; 2017 Mar 15; 89(Pt 1):659-665. PubMed ID: 26707001
    [Abstract] [Full Text] [Related]

  • 8. Surface charge modulated aptasensor in a single glass conical nanopore.
    Cai SL, Cao SH, Zheng YB, Zhao S, Yang JL, Li YQ.
    Biosens Bioelectron; 2015 Sep 15; 71():37-43. PubMed ID: 25884732
    [Abstract] [Full Text] [Related]

  • 9. Rolling chain amplification based signal-enhanced electrochemical aptasensor for ultrasensitive detection of ochratoxin A.
    Huang L, Wu J, Zheng L, Qian H, Xue F, Wu Y, Pan D, Adeloju SB, Chen W.
    Anal Chem; 2013 Nov 19; 85(22):10842-9. PubMed ID: 24206525
    [Abstract] [Full Text] [Related]

  • 10. "Signal off" aptasensor based on enzyme inhibition induced by conformational switch.
    Prieto-Simón B, Samitier J.
    Anal Chem; 2014 Feb 04; 86(3):1437-44. PubMed ID: 24377312
    [Abstract] [Full Text] [Related]

  • 11. A highly sensitive aptasensor for OTA detection based on hybridization chain reaction and fluorescent perylene probe.
    Wang B, Wu Y, Chen Y, Weng B, Xu L, Li C.
    Biosens Bioelectron; 2016 Jul 15; 81():125-130. PubMed ID: 26938491
    [Abstract] [Full Text] [Related]

  • 12. A Lateral Flow Strip Based Aptasensor for Detection of Ochratoxin A in Corn Samples.
    Zhang G, Zhu C, Huang Y, Yan J, Chen A.
    Molecules; 2018 Jan 31; 23(2):. PubMed ID: 29385022
    [Abstract] [Full Text] [Related]

  • 13. Exonuclease-Catalyzed Target Recycling Amplification and Immobilization-free Electrochemical Aptasensor.
    Tan Y, Wei X, Zhang Y, Wang P, Qiu B, Guo L, Lin Z, Yang HH.
    Anal Chem; 2015 Dec 01; 87(23):11826-31. PubMed ID: 26542113
    [Abstract] [Full Text] [Related]

  • 14. A universal strategy for aptamer-based nanopore sensing through host-guest interactions inside α-hemolysin.
    Li T, Liu L, Li Y, Xie J, Wu HC.
    Angew Chem Int Ed Engl; 2015 Jun 22; 54(26):7568-71. PubMed ID: 25966821
    [Abstract] [Full Text] [Related]

  • 15. Signal amplified strategy based on target-induced strand release coupling cleavage of nicking endonuclease for the ultrasensitive detection of ochratoxin A.
    Hun X, Liu F, Mei Z, Ma L, Wang Z, Luo X.
    Biosens Bioelectron; 2013 Jan 15; 39(1):145-51. PubMed ID: 22938841
    [Abstract] [Full Text] [Related]

  • 16. An Electrochemical Sensor Based on Structure Switching of Dithiol-modified Aptamer for Simple Detection of Ochratoxin A.
    Mazaafrianto DN, Ishida A, Maeki M, Tani H, Tokeshi M.
    Anal Sci; 2019 Nov 10; 35(11):1221-1226. PubMed ID: 31327816
    [Abstract] [Full Text] [Related]

  • 17. A signal-on electrochemical aptasensor based on silanized cellulose nanofibers for rapid point-of-use detection of ochratoxin A.
    El-Moghazy AY, Amaly N, Istamboulie G, Nitin N, Sun G.
    Mikrochim Acta; 2020 Sep 01; 187(9):535. PubMed ID: 32870397
    [Abstract] [Full Text] [Related]

  • 18. Simply amplified electrochemical aptasensor of ochratoxin A based on exonuclease-catalyzed target recycling.
    Tong P, Zhang L, Xu JJ, Chen HY.
    Biosens Bioelectron; 2011 Nov 15; 29(1):97-101. PubMed ID: 21855315
    [Abstract] [Full Text] [Related]

  • 19. Simultaneous electrochemical determination of ochratoxin A and fumonisin B1 with an aptasensor based on the use of a Y-shaped DNA structure on gold nanorods.
    Wei M, Xin L, Feng S, Liu Y.
    Mikrochim Acta; 2020 Jan 07; 187(2):102. PubMed ID: 31912309
    [Abstract] [Full Text] [Related]

  • 20. Fluorescent sensing ochratoxin A with single fluorophore-labeled aptamer.
    Zhao Q, Geng X, Wang H.
    Anal Bioanal Chem; 2013 Jul 07; 405(19):6281-6. PubMed ID: 23728728
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 13.